
Lecture 3 – The Clockwork Universe

Physics for Pedestrians

23rd July, 2019

1 Dimensional Analysis

Dimensional Analysis is a tool that has widespread use in physics. The purpose of dimensional
analysis is to give certain information about the relations which hold between the measurable quan-
tities associated with various physical phenomena. This method has the advantage of being rapid:
it enables us to dispense with making a complete analysis of the physical system before drawing
conclusions. On the other hand, it does not give us as complete information as might be obtained
by carrying out a more detailed analysis.

1.1 Dimensions

A physical quantity that may be measured is usually1 measured with respect to some standard. If
the length of an object – say, a table – is to be measured, it is measured using a scale. This scale
would say that the table measured, for example,

Length of table = 2 metres

This is shorthand for saying that if two standard metre scales of 1 metre each were placed of after
the other, they would have the same length as that of the table. Thus,

Length of table = 2︸︷︷︸
magnitude

× 1 metre︸ ︷︷ ︸
unit

Similarly, if a duration of time is to be measured to be, say, five years,

Duration = 1︸︷︷︸
magnitude

× 1 year︸ ︷︷ ︸
unit

= 3× 107︸ ︷︷ ︸
magnitude

× 1 second︸ ︷︷ ︸
unit

1Though not always!
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From the above example, it should be clear that the magnitude of a physical quantity depends on
the unit chosen. If we naively only paid attention to the magnitude, a year might seem like a very
small amount of time (just “1” unit), or a very large amount of time (30,000,000 units!).

It is important here to draw a distinction between dimensions (which are physical quantities
that may be measured) and units, which are the standards with reference to which they are
measured.

For example, length is a dimension, but it may be measured using different units, the yard,
the kilometre, the foot, or the light-year.

The physical quantities with dimension that we may measure can be broadly classified into two
groups: primary and secondary quantities. Primary quantities are considered fundamental and
irreducible (they cannot be written in terms of other quantities), while secondary quantities may
be constructed from combinations primary quantities. The primary quantities that we will refer to
through this course are mass (M), length (L), and time (T). An example here would perhaps be
enlightening: consider the quantity “speed” or “velocity”. It is defined to be the change in distance
(∆x undergone by an object in a time interval ∆t). i.e.

v =
∆x

∆t

In terms of dimensions, the numerator of the above equation is a measure of length (and hence has
dimension [L]), while the denominator is a measure of time (and hence has dimension [T]). The
dimensions of velocity (usually represented by [v]), are given by

[v] = LT−1.

Question: Show that the dimension of acceleration is

[a] = LT−2

Question: What are the dimensions of force?

1.2 Principles

Let us begin with two basic principles on which physics is based:

Principle 1: Only magnitudes of quantities of similar dimension can be compared.

This should be quite obvious: it makes no sense to say that an object which is 10 m long is “smaller”
than 1000 seconds. Similarly, questions like “Is a kilogram larger than a second”, or “How many
seconds are there in a metre”, or “How long is a gram” don’t make any sense.
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Principle 2: Physical phenomena and physical laws do not depend on the unit system selected.

This may not be quite so intuitive, but is nevertheless one of the guiding principles of Physics.
The units that we have chosen to describe the world, as described in the first lecture, are very
personal units, which make sense to us as humans, but would seem very strange to a bug or an
elephant.

The very nature of physics as a discipline requires that human beings and our choice of “stan-
dards” (such as the kilogram, or the metre, or the second) not be crucial to our description of the
universe.2

The first principle should make it clear that you cannot add two quantities that have different
dimensions (you can’t add a kilogram to a metre). The second is far deeper: it means that we could
change our units of measurement (say from Imperial to metric, or from human to bug) and our
description of Nature would continue to be as valid.

1.3 Constants of Nature

This is particularly important as in Nature we have certain physical constants which have dimension
(in other words, they are not merely magnitudes, but are measured in units). Whereas the physical
quantity indicated by a physical constant does not depend on the unit system used to express
the quantity, the numerical values of dimensional physical constants do depend on choice of unit
system.

The term “physical constant” refers to the physical quantity, and not to the numerical value
within any given system of units.

One example is the speed of light

c = 3× 108 m/s.

As can be seen by the “m/s”, the magnitude (3 × 108) of the speed of light depends on the units
chosen. If you had chosen to measure it in cm/s, then it would be

c = 3× 1010 cm/s.

If you had chosen to measure it in cm/hr, it would be

c = 1.8× 1012 cm/hr (1)

2This has sometimes been called the Copernican Principle, after Copernicus who argued that the universe – quite
literally – did not revolve around us.
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1.4 Analysing dimensions

In the above example, the speed of light is measured in units of (say) cm/hr. We can check whether
this is dimensionally consistent. We know that by definition, speed is a rate of change of distance
with respect to time, and so it must have dimension

[c] = LT−1

and on the right hand side, it is measured in units of cm ([cm] = L) over hour ([hour]=T), thus

[cm/hr] = LT−1

Thus, looking at the dimensions on either side of Equation (1),

c = 1.8× 1012 cm/hr

[c] = [cm/hr]

LT−1 = LT−1.

Notice that in the second line of the above equation the magnitude (1.8 × 1012 suddenly
disappears, but we still have an equality sign. The reason for this is because when we use the
“[]” notation we are only concerned with the dimensions on either side, which is not affected
by the magnitude which is a pure number.

1.5 Method

Let us begin with an example. Suppose you want to find the maximum height hmax that a ball
thrown upward with some speed u can reach. You spend some time thinking and decide that it
could depend on the speed u (if u were greater, so would the height it reaches), the acceleration due
to the gravity g (if this experiment were done on the moon, the ball would certainly move higher),
and you feel that it would also depend on the mass m of the ball.

hmax should thus be some combination of u, g, and m. Since these quantities can’t just be added
(why not?), we need to combine them in some suitable way to get a quantity with dimension length.
So we say

hmax ∼ u× u× u× . . .︸ ︷︷ ︸
a times

× g × g × g × . . .︸ ︷︷ ︸
b times

×m×m×m× . . .︸ ︷︷ ︸
c times

∼ uagbmc
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It’s important to realise that we have used the ∼ symbol on purpose. This method of analysis
(as we saw in the last section) cannot tell us anything about the dimensionless number in
front of these units (like the magnitude 1.8× 1012 in our last example). Thus, our answer is
only very roughly correct, and there will most often be a constant which is larger than 1 in
front of it.

Now, we consider only the dimensions on either side.

= [u]a[g]b[m]c

L = (LT−1)a(LT−2)b(M)c

L1 = La+bT−(a+2b)M c

M0L1T 0 = La+bT−(a+2b)M c

The equality sign has replaced ∼ since we’re only dealing with the dimensions, and this is a
pure equality.

In the last step, we compare the dimensions on either side of the equation. The left-hand side, which
only has length, has no mass or time, and we represent this by placing mass and time to the power
0.3 We then compare the powers on either side. Since there is no mass on the left-hand side, this
means that on the right-hand side, c = 0.

Similarly, since there is no time on the left-hand side, the power of time on the right-hand side
should also be zero.

=⇒ −(a + 2b) = 0 =⇒ a = −2b

And last of all, since there is only one length on the left-hand side, the power of length on the
right-hand side must be 1.

a + b = 1

Question: Show that this implies that

hmax ∼
u2

g

Doing a more detailed analysis (beyond the scope of this class), you will find that

hmax =
1

2

u2

g

which is not far off!

3Since any number to the power 0 is 1, which is dimensionless.
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From this, we also reach what might seem to be a strange conclusion: while we had assumed that
mass might be a factor, it turns out that the mass does not seem to contribute to the maximum
height reached! The reason for this is that there is no way in this scheme of things, for mass
to be placed in the above equation!

The method used in dimensional analysis is simple. However, using it in more complicated situation
becomes an art. Suppose you have a physical situation, and you want to decide quantitatively how
some parameter depends on the other parameters of the problem. Here are the steps:

1. Step 1: Find the relevant parameters that the problem depends on. In the above example, it
would be u, g, and m.

2. Step 2: Write the quantity that you are interested in as some product of powers of the other
quantities.

3. Step 3: Expand these quantities in terms of their fundamental dimensions (u = LT−1,
g = LT−2, etc.) and equate the dimensions on either side, deriving a relation between the
powers.

4. Step 4: Solve for the powers to get the final relation. Interpret your result (i.e. the mass does
not affect the maximum height, etc.)

Obviously, the most important step is the first: finding the quantities that matter, and this is no
small task. It requires a slight understanding of physics.

2 Understanding the quantities that matter

In order to understand the parameters that are important, we need a more detailed understanding
of physics. Let us begin with a study of Classical systems.

2.1 Galileo’s Experiments

We will focus on two experiments that Galileo conducted. The first was concerned with the falling
of objects, and the second with the natural state of an object.

2.1.1 Free-fall

At the time, it was assumed that objects of different masses took different amounts of time to fall
a certain distance. This was in accordance with experiment: a coin and a feather do not take the
same amount of time to fall a certain distance.

Galileo performed experiments to test this. He had a set of inclined planes at different angles, and he
rolled identical objects down them, with different masses. The result was that at every angle, the two
objects reached the bottom at the same time. He carried this out for many different masses and was
forced to conclude that the time the object took to roll down an inclined plane was independent
of the mass!

He then performed a thought-experiment: since it was too hard to tell if two objects reached the
ground at the same time when they were dropped, he assumed that two objects falling vertically
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could be thought of as two objects rolling down an inclined plane at an angle of 90◦! Since the
angle did not affect the fact that the masses reached the ground at the same time, he concluded
that the time taken by an object to fall a distance was independent of the mass.4

2.1.2 The principle of inertia

He then carried out experiments on a track which was inclined at different angles on either side
(similar to what you saw in class). When an object was released at one end, it was found to speed
up until it reached the bottom of the track, and then slow down until it reached the original height
again! In other words, the distance it covered in the second half of its journey was not important:
it was only the vertical distance or height that mattered.

While performing this experiment on tracks that were successively steeper, Galileo realised that
no matter what happened, the ball would seek its own height. However, in order to do so, the
speed of the ball (which was maximum at the bottom) would have to reduce until it was zero at
the moment when it attained its original height. However, as the tracks got steeper, the ball would
have to go further and further to attain its original height. He then conducted his second thought
experiment. He imagined a track which was completely flat (parallel to the floor) and imagined
what would happen if he released the ball: on reaching the “bottom” of the track, the ball would
have a maximum speed, and it would then slow down until it reached its original height. However,
since the track is flat, it can never reach its original height, meaning that it would never slow down
but continue at a constant speed forever.

From here, Galileo concluded that the natural state of an object is to be either at rest, or in a state
of uniform linear motion (motion in a straight line with a constant velocity.). This is known as the
principle of inertia.

2.2 Newton’s Laws

2.3 The First Law: Reference Frames and Inertia

Newton’s first law is basically a restatement of Galileo’s principle of inertia. It claims that an object’s
natural state is one of rest or uniform rectilinear motion.5 Any deviation from this motion would
have to be due to an external influence, known as a force.

Using the first law, Newton was able to establish what we now call an inertial reference frame.
The motion of a body can only be described relative to something else – other bodies, observers,
or a set of coordinates in space (and time). For example, imagine your phone lying on a table in a
room with the lights out. In order to locate it specifically so that your friend may go in and get it
without turning on the lights, you would require to give her three numbers, say, the number of steps
she would need to walk directly forward, the number of steps she would have to walk left or right,
and the height of the table. These three “coordinates” are sufficient to localise anything in space.
Of course, in order for any of this to make sense, you need also to specify that all these numbers are
with respect to the starting point, which is the door (this is known as the origin).

4It depended only on the angle.
5That is, motion in a straight line.

7



We imagine placing ourselves in a reference frame and looking at the motion of different objects
around us. (Let us place ourselves in free space to avoid all the pesky effects of gravity.) We may
look around and see many different objects moving around, and we sit down and calculate each of
their velocities. We find that almost all of them are either standing still or moving at a constant
speed, except one little alien with a jetpack, which seems to be increasing it’s velocity (i.e. which is
accelerating).

An inertial reference frame is one in which all accelerations have a clear physical cause, which we
call a force. Newton’s first law only holds in such reference frames.

Armed with this knowledge, you should out to the alien and say “Listen, I have calculated that you’re
accelerating, and Newton tells me that this means that you feel a force. Can you feel something
pushing you?” And the object replies “I do!”. Satisfied, you go back to your cataloguing.

The alien, however, pauses for a moment and looks around. In particular, he sees you accelerating
backwards (since he’s accelerating forwards with respect to you, you must be accelerating backwards
with respect to him). He then says, “Aha! I see this humanoid accelerating, which means that
she must feel a force!”. So he shouts out to you6 “Listen, now I have calculated that you are
accelerating, and according to your man Newton, this should mean that you too feel a force! Can
you feel something pushing you?”, and you reply “No! I feel no forces at all!”.

There is thus an asymmetry between these two situations. In one case, the acceleration (that of the
alien, with respect to you) was the result of a force, while in the other case the acceleration (that
of you, with respect to the alien) was because of the alien’s own acceleration. Since the alien was
in an accelerating frame of reference, which is not an inertial frame, he cannot claim that all
accelerations are due to forces.

Question: Is our frame of reference – on the surface of the Earth – an inertial frame of
reference?

2.4 The Second Law: what do forces do?

Having defined what he meant by a force, Newton goes on to describe what the action of a force
means. A force, he claims, changes the natural state that an object is in. Since the natural state
is one of uniform velocity, a good guess would be that a force does something to induce a rate of
change of velocity.

For simple systems, this just means that the force induces an acceleration. This means that the
force F and the acceleration of the object a are related by:

F ∝ a7

F = m× a

where m is a constant for an object, known as the (inertial) mass of the object.

An enlightening way to rewrite the second law is

6In space, no one can hear you scream. But let’s suspend disbelief for a while.
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a =
F

m
.

It shows us that the acceleration experienced by an object depends directly on the force applied
externally, and depends inverse on the mass of the object. In other words, if you are trying to push
two cupboards, one twice as massive as the other, you would require two times the force for the
former (as compared to the latter) to get them to move at the same acceleration.8

The acceleration is the rate of change of velocity, which is in turn the rate of change of position.
Thus,

a =
∆v

∆t
=

∆
(

∆x
∆t

)
∆t

Thus, Newton’s second law relates the change in velocity (and hence position) of an object due to
an external influence (the force). If we know the force, then we could – in principle – solve the above
equation exactly to find the position of the particle at every instant of time.

2.5 The Third Law: pairs of forces

In the third law, Newton explained that forces come in pairs. Thus, the force that an object 1
exerts on 2 (let’s call it F12) is the same as the force that an object 2 exerts on 1 (which we call
F21), but in the opposite direction, i.e.

F12 = −F21.

It is important to realise that these two forces to not occur on the same object. (If this had been the
case, no object would ever move, as all the forces on it would be perpetually cancelled out!)

2.6 Newton’s laws in action: pushing a box on a table

Imagine you had a box on a table that you were trying to push using the force of the muscles in
your fingers Fmuscles, as shown in Figure (1). The object is at rest on a table. The force of gravity
is acting downwards on it, and the table exerts a reaction force upwards, known as the normal
force. These two forces are equal in magnitude and opposite in direction, so that the box does not
accelerate downwards, and remains at rest. This is Newton’s First Law in action.

You might imagine, since the forces are equal in magnitude and opposite in direction, that
this is a result of Newton’s Third Law, but this is not the case, as can be tested by realising
that the two forces (Weight and Normal Force) act on the same object, i.e. the box. This
does not happen in the case where the third law applies, as in that case the force F12 acts
on the object 2, while the force F21 acts on the object 1!

8Keep in mind, however, that most of your intuitive understanding of how heavy something is to push is due to
the existence of friction on the Earth. This law, however, is also true in free space, where this is no friction. There
too, moving a more massive object requires more force.
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As you push against the box, it feels a force Ffinger due to your finger, and it presses back with a
force Fbox which is of the same magnitude. However, this force is no match for Fmuscles. The forward
force from your finger overcomes the frictional force from the table. As can be seen from the figure,
there is a net imbalance of forces on the matchbox (since Ffinger > Friction) which causes the object
to accelerate to the left, as a result of Newton’s Second Law.

Figure 1: (Works best in colour) Forces acting on a box that’s being pushed by your finger. Forces
of the same colour are pairs of equal magnitude and opposite direction, from Newton’s Third Law.
While the Weight and the Normal Force of the ground are also equal in magnitude and opposite in
direction, they are not such a pair, since they act on the same object.

The point of the figure is to make clear that the third law deals with matched pairs of forces
that act on different objects. Equilibrium from Newton’s first or second law deals with the
resultant force on a single object.
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