Lecture 4 — The Clockwork Universe

Physics for Pedestrians

26th July, 2019

1 The Third Law: Conservation of Momentum

Newton’s three laws provided a framework to describe the entire universe as it was then known. It
explained the motions just as well as it explained the motion of celestial bodies, and the rules that
they followed were simple.

Let us now look at a result of Newton’s third law: forces come in equal and opposite pairs that act
on different bodies. In order to understand this, imagine two masses m; and mgy which are travelling
on a straight line towards each other with velocities v; and vy respectively, as shown in Figure (1).
These objects are not attracting each other, and — at this instant — there is no force between them.
However, as they collide, there is a contact force which arises because of their interaction. During
the collision, both bodies feel a force: my exerts a force of Fi5 on mo, and mo exerts a force of Foq
on my. By the third law, we know that

Fig = —Fip (1)
Al U2
TH|  — - TT2
my 1m2
Collision
v vy
- 1T 111 -

Figure 1: Two objects before, during, and after collision.

Remember, these forces act on different objects: Fio is the force of my acting on msg, and
vice versa.




This would lead to a change in the velocities of these masses. Let us call these new velocities v} and
/ 1
vy. Where

v] = v + Avy

vh = vy + Avy

(2)

But what are the forces Fjo and Fy; in terms of the masses and (changes in) velocities of the
objects?

We know that the acceleration of an object is given by the change in its velocity in a small interval

of time. Thus,

Av
a= At (3)

If we imagine that the two objects collide over some interval of time At, then it should be clear that
the force Fio is given by

A?)l
F12 =m 7At (4)
Similarly,
Av
Fon =ma 1 )

But from Newton’s Third Law, we have that F}5 = —F5q, and so

mlAvl = 7m2AU2 (6)

Looking at this, we see something curious: it looks like that amount of this quantity m x v (known
as momentum) which is lost (or gained) by the mass m; is gained (or lost) by the mass ms. In
other words, it looks like the the quantity m, X v1 4+ ms X vs is constant or conserved, despite the
collision. Let us try to prove this:

Let us say that the quantity?

miv1 + mavy = p (7)

Now let us look at the same quantity after the collision:

IThe A notation denote a change in an object. Thus, Av; would be the change in the velocity v1, and this is how
it should be read.

2The notation p for momentum comes from the Latin petere, which was the root word of a concept known as
impetus which in turn was the predecessor of the concept of momentum.



myv] + mavhy = my (v + Avy) + ma(ve + Avg)

= (mlvl + mQ’Ug) + (mlAvl + mgA’Ug)

(8)

=p =0, from Equation (6)
=p
Thus, this quantity p is the same before and after the collision. Thus, it is a conserved quan-

tity.
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Let’s examine why Newton might suggest we wear seatbelts: suppose you're sitting in a car
(of mass 2000 kg) moving at some velocity (say, 20 km/hr).

Question: What is the momentum of the system (both you and the car)? Now imagine
that the car crashes against a brick wall, coming to rest.

Question: What should your momentum be, so that the total momentum is conserved?

Question: If you stopped sharply, this could kill you. What do you think the seatbelt is
designed to do, in order to reduce the force on you? Hint: Look at Equation (3).

2 The Second Law: Accelerations and Forces

As described earlier, the second law establishes — in an inertial frame — the relationship between a
force and a perceived acceleration. Our bodies are accelerometers, not speedometers. What this
means is that we cannot have a sense of the speed with which we are travelling,® we can only sense
accelerations. For example, when you’re on an aeroplane that’s travelling at a great velocity, it does
not seem any different from travelling on a train or in a car, which move much slower in comparison.
Indeed, it’s so much like firm ground that the stewards serve you coffee and food, despite the fact
that you're hurtling through the sky at a tremendous pace with respect to the Earth. However, the
minute there is turbulence (which is essentially a change in velocity due to pockets turbulent air
which exert a force on the aeroplane) you most certainly feel it!

But, you may protest, when you are on a motorcycle, you are acutely aware of your speed. The
reason for this is because the motorcycle is very badly designed, aerodynamically speaking. Unlike
the car or the plane which are designed to be streamlined, the motorcycle disrupts the air through
which it travels and the rider feels a force due to the collisions of the air molecules on her body.
Cars and planes are mercifully smooth and enclosed, and such forces are therefore not felt.

3This is a result of a very deep and fundamental concept that has nothing to do with Biology, but which is an
essential part of Physics which we will study next week.



Question: Show that the dimensions of force are given by
[F] = MLT™? 9)

Force is thus measured in units of 1 kg m/s?, otherwise called 1 newton (after the big man
himself).

.

The most instructive way of writing Newton’s Second Law is

F
=— 10
= (10)
as it shows that the acceleration a body experiences is related to the force (an external agent of
change) and the body’s own mass.

2.1 Mass

Imagine you are in free space, and you had two objects (as shown in Figure (2)) that you are trying
to push. The first object has a mass of (say) 50 kg, and the second has a mass of 100 kg. You apply
on each of them a constant force of 120 newtons, that is 20 kg m/s?.

a; = 2.4 m/s?
—
my = 50kg

F = 120N mg = 100kg a; = 1.2 m/s?
—

Figure 2: The same constant force acting on two objects, one twice as massive as the other, will
produce two times greater an acceleration on the lighter object than on the heavier one.

Let us calculate the accelerations of each of these objects: for object 1, we apply Newton’s Second
Law to get that the acceleration is*

F 120 kg m/s’

- = = 2.4 m/s?
m 50 kg m/s

a]; =

41 have purposely chosen numbers that don’t divide exactly, since I want those of you uncomfortable with mathe-
matics to practice a little bit.



Applying this law to the second object, we get

F 120 kg m/s” 9
2= T Tiookg RS

Thus, the accelerations are not the same. More massive objects accelerate less than less massive
ones, when acted on by a constant external force.

2.2 Circular Motion

If we place ourselves in an inertial frame, and we see an object accelerating, then it must also be
feeling a force. However, we must realise that acceleration deals with velocities not speeds. Consider
the example of an object rotating in a circle. At some arbitrary instant of time, the object is moving
at some velocity (say wvg). The force is always at 90° to the velocity (as you can see from the
Figure (?7?)) and it can be shown mathematically that this means that it is only the direction of
the velocity that changes at every instant, not its magnitude. We can use this to calculate the force
that is experienced by such an object. The actual derivation requires either a lot of geometry or
some calculus, but let us perform an “order-of-magnitude” estimate.
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Figure 3: An object moving in circular motion: it’s velocity shifts from +wvg (i.e., speed of vy to the
right, to —vg (i.e. speed of vy to the left when it moves from the top to the bottom of the circle.

We know that acceleration is given by

) change in velocity  Av
a = acceleration = =

change in time At

In the two points shown in the diagram, the velocity changes from being +wvg (i.e. a speed vy going
towards the right) to —vg (i.e. a speed vy going towards the left). The total change in velocity is
thus (+vg — (—vp)) = 2vp.”

5Tf you are confused about this, imagine that someone moving to the right at 20 km/hr suddenly starts moving to
the left at 20 km/hr. What is the total change in his velocity?



What is the total time taken to go from the top to be bottom? A naive way to solve this (there
might be others) would be to take the total distance the object is covering (half the circumference
of the circle with radius r = 27r/2) and divide it by the “speed” vy. Thus,

Av = 2110

Vo (11)

Thus, from Newton’s Second Law, in order to keep an object of mass m in uniform circular motion
at some speed v, one would need to exert a force from the centre which is equal to

2.3 Elevators

Another example of when this happens is what happens in a lift. Imagine you are standing in a lift
that’s initially at rest,® and you feel a force acting on you from the ground. It’s important that you
realise this: the force that you feel is acting upwards against your feet. Let us first understand why
you feel this: the force of gravity is indeed pulling you down, and given half a chance, it will make
you accelerate towards the centre of the Earth. This is what happens when you step off a high table,
for example — the force of gravity accelerates you downwards. However, as you stand still on the
elevator, you are certainly not accelerating. The reason for this is because the ground is producing
an opposing force which counters gravity. As a result, both these forces cancel out and you stay at
rest. Note that despite these two forces being equal and opposite, they are not a result of Newton’s
third law, since both the forces act on the same object (in this case, you).

Thus, you feel the floor exerting a force on you which is equal to your weight mg, upwards. Now
imagine that the elevator starts to accelerate upwards with some acceleration a: in addition to the
force that the floor is exerting on you to counter gravity, there is now another force that you feel
due to the acceleration of the lift. This force that you feel is equal to ma (as your mass is m and
you are being accelerated), and acts in the same direction as reaction force to gravity. Thus, the net
force that you feel is

Fhet = mg + ma (both forces act in the same direction, and hence add)

As a result, you feel a little heavier as the lift takes off, since the floor pushes up on you a little more
than usual; you can actually test this using a weighing balance, or by getting an “accelerometer”
app for your phone.

61°d advise you all to go out and actually perform this experiment.



The lift then moves with a constant velocity, so you no longer feel heavier (since now the floor’s
force is only countering gravity), until it starts to decelerate when you reach your destination. As
the lift decelerates, the lift’s floor is being “pulled down” with an acceleration a, which reduces the
force your feet feel on the floor. Thus, the net force that you feel in this case is

Fhet = mg — ma (both forces act in different directions, and hence subtract)

N =mg—ma

N =mg+ ma

N =g

T

mg

W =mg

(a) Lift standing still ~ (b) Lift accelerating up (b) Lift decelerating up

(or decelerating down) (or accelerating down)

Figure 4: In each of the cases, the weight force W due to gravity always acts downwards. What
changes is the force of the lift’s floor on us N. When lift stands still, this is just mg, since we are
not accelerating. As the lift accelerates upwards, the floor provides an additional force ma which
we feel. As it decelerates to a stop, a force ma is felt in the opposite direction.

Similar processes happen when you leave a floor and travel downwards in a lift. The lifts acceleration
acting downwards reduces the force the floor acts on you, and you feel slightly lighter. As you reach
the ground, the lift decelerates, providing an acceleration against your velocity, this time making
you feel a slightly greater force from the floor. If the lift’s cable were cut, both you and the floor
would accelerate at the same rate, and you would feel no force from the floor. This experience of
“weightlessness” might be exhilarating if it weren’t for the anticipation of the swift end awaiting
you at the bottom!

3 Gravity

The above statement might have seemed a little strange: why would the elevator and you both
accelerate downwards at the same rate? It seemed, from our earlier analysis, that the acceleration
of a body under a constant force should be more for a lighter object than a heavier one. This is true
for constant forces, but not for gravity, as we shall explain.

Let us re-examine the equation of the Second Law:
F
m

a =

As we are now dealing with gravity, let us call this acceleration by its own special name “g”, and
the force Fy, (g for gravity). Thus,



g=—
m
From Galileo’s experiments on inclined planes, we know that the acceleration due to gravity is
independent of the mass of the object that is falling. But from the above equation, it should
be clear that if the force of gravity were constant on all masses, this would not be true.

Thus, the force of gravity must depend on the mass of the object. In other words,

Fyoxm

t1.e. Iy = constant x m
If this were the case, then if we replaced Fy in the above equation,

constant X m
g = ——— = constant
m

Let this sink in: a more massive object experiences a greater force than a less massive one, but the
acceleration that they both feel is exactly the same. This should be clear, if we are to proceed, so
take some time. Ready? Good.

Now, we ask ourselves why there is such a force. Newton’s genius was to realise that this force was
due to the mass of the Earth, M. We now remember Newton’s Third Law: forces come in pairs.
If the Earth is attracting the object (say, an apple) with a force F,, the Third Law says that the
apple must be attracting the Earth with the same force (but in the opposite direction). Thus, the
Earth experiences a force —F}, and “falls” towards the apple.

This force cannot be independent of the Earth’s mass, as there is nothing differentiating the Earth
and the apple other than the numerical amount of mass they possess. We could think of a thought-
experiment, keeping the apple as it is and “raising” the Earth a certain height above the apple and
letting go. This should be exactly the same situation as given above (since there too the Earth will
experience a force of —F), from the apple, and the apple a force of F, from the Earth).

Thus, it must be that

Fy; = another constant x Mg

Question: The image of the Earth falling towards the apple is understandably unbelievable.
Let’s try and put some numbers to it: say you are a 100 kg, and falling towards the Earth.
It is exerting a force of 100 kg x 10 m/s?® on you. By the Third Law, the Earth must also
be experiencing a force due to you of 1000 kg m/s?. What is the acceleration of the Earth?
Hint: The mass of the Earth is 6x10%*kg.

If you’re enthusiastic: Show that in a couple of seconds, the Earth “falls” towards the
apple by a distance much, much, smaller than an atom.

] have used g=10 m/s?, you may use 9.8 m/s? if you wish.




Let’s have a look at this again:

Fyocm
Fg X ME
In other words, if we kept the mass of the Earth constant, and doubled the mass of the apple, the

force would double. Going the other way, if we kept the mass of the apple constant, and doubled
the mass of the Earth, the force would still double.

Question: Convince yourself that this means:

Foxmx Mg (12)

Newton’s generalisation of this law, possibly the greatest generalisation achieved by the human
mind, was to imagine that it was this very same law that governed the motions of planets. From
the studies of Kepler and Brahe, he knew that the force on different objects seemed to reduce as the
distance increased, so he could say that

mME

/'«-?’L

F x (13)
where r is the distance between the two objects (in this case the apple and the Earth) and n is some
number — the larger n is, the faster the effect of the force “dies out” over long distances. This is
as far as we can go using only logic. Newton then postulated a constant (G) that multiplies the
right-hand side of the above equation which would be the same for any two masses (m; and my)
that attract each other through gravity:

(14)

Question: Convince yourself that if you have two masses m; and mso attracting each other
by gravity, that this means that the acceleration (not Force!) of m; depends on the mass
of mg, and the acceleration of my depends on the mass of m;.

We can now get the number n by using the fact that the apple falls towards the Earth due to the
same force that keeps the moon in orbit around the Earth.



Question: Show that the acceleration of the apple due to the force of the Earth is given
by

M,
Gapple-Earth = G Rif; R = Radius of the Earth

and that the acceleration of the moon due to the force of the Earth is given by

Mg
Gmoon-Earth = G -
(rmoon—Earth)

Question: Show that this means that

Gmoon-Earth _ ( R )n

Gapple-Earth Tmoon-Earth
Question: Taking the acceleration of the moon to be 0.00272 m/s?, and the acceleration
of the apple to be 10 m/s?, and the distance of the moon from the Earth to be 60R, show

that n = 2. The force of gravity is thus known to follow an inverse-square law, as it falls off
as the inverse square of the distance between the objects.

.

On the surface of the Earth, the distances between objects and the centre of the Earth are more or
less constant, and so we can see that all objects on the surface of the Earth experience a force (due

to the Earth) of

Py

—— (15)

Fy=mepj X g

Question: What are the dimensions of G?

Question: Suppose the acceleration due to gravity on a planet g, depended on the planet’s
density p, its radius R, and the gravitational constant G, find how g, depends on these
parameters. i.e. assume

gp ~ Gp"R° (16)

and find a, b, and c.

4 The Conservation of Energy

We have seen that on the surface of the Earth, the force of gravity is nearly constant, and equal to

mg. When we move objects up and down, we are doing some work against this force.

It may not be obviously evident to you that the amount of work you do to lift an object depends
only on the vertical distance it is displaced. Work is only done when an object is displaced against

10



a force.

You can see this by imagining a perfectly frictionless table on the surface of the Earth: moving an
object on such a table will require less and less work, as the force of friction is reduced (indeed, it
would be a very troublesome thing, as in the ideal case, even a slight nudge would send the object
sliding away!).

Another way you can see this is that if you have the misfortune to live on the 7th floor, it is quite
difficult to get up there, however once you are there, it’s not harder to walk around, or lift objects.
In fact, without looking out a window, there’s no way you’d be able to tell if you were on the ground
floor, the third, or the seventh!

When you apply a force over a given distance, you do work. By lifting an object to a height h above
the ground, I have applied a force equal to its weight (mg) over a distance h. The work I have done
is given by:

Work = Force x Displacement
Work = mgh

But when I have raised the object, where has this work gone? It has gone into a state of limbo,
a state of “potential” work. It certainly still has the potential to do work, as I could drop the
object and it would fall back on my foot causing me no small distress. It does this by changing its
configuration. In other words, the work that I have done has gone into changing the configuration
of the system. By doing work, we change a quantity of the system known as its energy. But lifting
an object a certain height, it is said to have potential energy.

Potential Energy due to gravity = mgh (17)

Of course, we could also have an object on the surface of a frictionless table on the Earth sliding
with a uniform velocity v. As it is not changing its height, clearly its potential energy (as defined
above) is the same. However, in trying to stop it, we must change its velocity (and therefore impart
and acceleration the object). This requires the use of force, over a certain distance until it comes
to rest. Thus, the object must possess some energy by virtue of its motion. We call this kinetic
energy. Mathematically, it can be shown that:

1
Kinetic Energy of an object moving at velocity v = §m02 (18)

This also explains why when we pick an object up from rest and raise it up to a height to let it
go, it speeds up as it falls. This process is a conversion of energy from potential to kinetic. As the
object falls, it reduces its potential energy, and thus has to increase its kinetic energy since the total
energy in a system is always conserved.

11



Question: Using the conservation of energy, show that the maximum height a ball thrown

with a velocity u can reach is:

u2

hmax = 5o

29

Such conservation laws are very useful in Physics, as they allow us different ways of solving a problem,
as we shall illustrate while trying to respond to Aristotle’s old observation: “Heavier objects fall
faster than lighter ones”.

5 Drag

Cupcake liner @

mg

Figure 5: A force-diagram: gravity acts downwards, and the drag force acts against its motion.

Imagine a cupcake liner, as shown in Figures (5) and (6), released from a certain height. As the
liner falls, it experiences two forces: one from gravity, and the other from friction with the air. This
second force is what we call a “drag force”, which we will denote by Fj.

5.1 Calculating Fy

Calculating the drag force might seem like a formidable task, but it can be greatly simplified using
some assumptions.

1. First, we imagine the liner at some point in its trajectory, moving at some velocity v.

2. We assume the air underneath the liner to initially be at rest before it comes in contact with
the linear, and then to be dragged along with the liner at the same velocity v as the liner after
contact. (It may be clearer for you to imagine the particles of air to be little beads that stick
to the liner as it passes).

3. We imagine a tiny instant of time At which is so small that the acceleration of the liner due
to gravity can be ignored, and only its velocity contributes to changing its position.

Once you have convinced yourself of these assumptions, we are ready to start. We begin by realising
that by bringing the air molecules up to its own speed, the liner has given them momentum (and
therefore lost momentum itself, since momentum must be conserved). Let us thus start off by
calculating the amount of momentum given to the air.

12
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Figure 6: The cupcake liner falling through air in an instant At covers a distance vAt.

Apair = Momentum received by air = M, X v — M x 07
But what is M,;;? We can think of the liner as sweeping out some volume V in time At, and

multiply this by the density of air pai; to get the mass of air. Convince yourself that if the area of
the bottom of the liner is A, the volume of air swept out by the liner is

Volume of air = A x (vAt)

Thus, from Equation (5.1) the total momentum given to the air in a time interval At is

Apair = (pair X AvAL) x v = pAv2At (19)

By the conservation of momentum, it must be that the total momentum lost by the liner Apji,e, is
equal and opposite.

Apliner - _pairszAt (20)

Thus, this “drag” force on the liner, defined as the rate of change of momentum due to collisions
with air, is given by

_ Apliner
At

Fy; = = —pairAv? (21)

We now have enough information to attempt a solution.
5.2 Solving the problem using forces

We can now ask ourselves the same question as before: what is the net force on the liner?

Fnet =mg — pairAU2 (22)

7As the air is initially at rest, its initial velocity is 0.
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at every instant of time. However, as the object falls, its velocity v increases. Thus, there is some
velocity v = v; when the right hand side of the equation is zero! This may not be evident to you,
take some time to understand it.

At this velocity vy, the net force on the liner is zero, and so its acceleration is zero, and hence it stays
at the same velocity v;! We can now easily calculate vy, as by definition, at v = v;,a = 0.

a =0 (when v = v;)

=mg — pairAvtz =0 (23)
mg

— v =
PairA

Thus, v; — the terminal velocity that the object attains — is dependent on the mass of the object.
Heavier objects have a higher terminal velocity and thus attain it much later than lighter objects.
A feather’s terminal velocity is so small that the instant it is released, it attains it, and from then
on it floats down at this constant velocity. However, a book’s terminal velocity is so much larger
that you’d have to drop it from a rather tall building for it to reach this velocity before hitting the
ground!

We can also see that this velocity depends inversely on the medium in which the object is dropped.
By dropping it in a very dense medium, the terminal velocity is reduced, and therefore attained much
sooner. This explains why objects dropped in water fall slower than those dropped in air.

5.3 Solving the problem using energies — optional

We could now solve the same problem using the energy viewpoint. When we drop the object from
some height h, it has some potential energy. As it falls, we’ve seen that its potential energy converts
into kinetic energy. However, we know that after a point its kinetic energy stays constant (since it
does not change its velocity!). However, its potential energy keeps decreasing (as it’s falling). We
seem to have a bit of a problem: energy cannot disappear, yet here it seems that as an object falls
with a constant speed, its potential energy reduces, but its kinetic energy stays the same.

The solution is — of course — that there is the drag force F,; against which such motion is occurring.
Moving an object against any force requires work, and thus the expenditure of energy.

Let us assume that the object has reached a velocity vy, such that it is no longer increasing its velocity.
In this case, all the potential energy the object loses must be used to overcome the frictional drag!
If the object falls a certain distance (say y), then it has lost a potential energy

Loss in potential energy = mgy

However, at the same time, it has moved a distance y against the drag force Fj;. Thus, the energy
to move it against the drag force is

Energy required to move it against drag = Fy x y = pAviy

Equating these two energies, we see that y cancels out on either side, and that

14
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Cupcake liner
Figure 7: As the liner falls a distance y, its potential energy drops by the same amount as the work
done against the drag force Fy.

UV =
pairA

just as before.
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