
Lectures 5 & 6 – The Special Theory of Relativity

Physics for Pedestrians

30th July, 2019

I have Dr. Bikram Phookun (from St. Stephen’s College, Delhi) to thank for a large part of
these notes.

1 Properties of Space and Time

Imagine that you are in the metro, underground. The PA system announces that the doors will open
to the right at your stop. You are the only passenger getting off. As you get ready to disembark,
you find that you don’t know which side is on the right! And the reason for your confusion, you
realise, is that you don’t know which way the train is moving.

You may also have observed that so long as the train moves steadily through the tunnel it is virtually
impossible to determine how fast it is moving (unless the sound that it makes is proportional to its
speed).

In other words, in the perceptions of our environment there is nothing that reveals the speed and
direction – i.e. our velocity – at which we are moving, at which we are moving – unless there
are external indicators. In other words, it is only with reference to external markers that we can
determine our velocity (unlike acceleration, which you experience when the train starts or stops, or
when the train turns at constant speed, in a very palpable fashion). This is a property of space and
time that goes much deeper than our perceptions: there is in fact no experiment that can reveal
the absolute velocity at which the equipment used to perform the experiment is moving. In some
fundamental sense, therefore, absolute velocity has no meaning: velocity is always relative. This is
called the Principle of Relativity.

To this property of space let us add three others that are more obvious: (i) all points in space are
equivalent; (ii) all directions from a point are equivalent; and (iii) all instants are equivalent. The
first implies that if an experiment is carried out at two different points in space, it produces the
same result. The second implies that the results of an experiment do not depend on the orientation
of the equipment. The third implies that they also do not depend on whether the experiment is
done today or tomorrow.
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2 The Laws of Physics and the Principle of Relativity

The laws of physics are theoretical constructs that encapsulate the results of experiments. They too
must therefore show the same invariances that experiments do. Since a physical law is a relationship
between quantities, what we mean by invariance is invariance of this relationship, i.e. of the form
of the law. This is best understood through an example. Consider the application of Newton’s
second law of motion to a body of mass m1 interacting gravitationally with another body of mass
m2 separated by it by the distance r12:

m1a1 =
Gm1m2

r2
12

r̂12 (1)

Notice that, within the common-sense way of the world within which this relationship holds, the
acceleration of an object is independent of the velocity of the observer, so long as the latter is
constant. So are masses, and distance. So is the direction of force, given by r̂12. Thus, both sides of
the equation are independent of velocity of the observer with respect to the system, so long as it is
constant. The form of the equation is thus the same for all observers moving at constant velocities
with respect to the system.

3 Inertial Frames of Reference

Notice that to verify that the form of a law of physics is the same for two observers, we will need to
figure out things like the distance between objects and the acceleration of objects, with respect to
these two observers. Such measurements will need measurements of position and time. It is useful
to imagine a coordinate system equipped with devices – rulers and clocks – that allow measurements
of position and time, and stuck to the observer and moving with him/her; this is the rest frame of
the observer.

We have described space as being homogeneous, isotropic, and time-invariant. Notice that this
is true only for an observer moving at a constant velocity. The moment an observer accelerates,
one direction becomes special. (When a train accelerates or decelerates, you feel a force in one
direction even though there is nothing physically attracting or repelling you in that direction – so
that direction becomes special.) A frame of reference in which all positions, directions, or moments
are equivalent is called an Inertial Frame. It can equally be thought of as a frame in which any
force is the result of a physical interaction rather than just the result of acceleration of the observer.
Because of the principle of relativity any other frame moving an constant velocity with respect to
an inertial frame is also an inertial frame.

The problem of verifying whether the laws of physics have the same form to all inertial observers
thus reduces to that of verifying that they have the same form in all inertial frames of reference.
And, since comparison of the views of different observers requires position and time measurements
made by them, we must begin with the comparison of position and time measurements in different
inertial frames of reference.

Let us begin by comparing how a single point in space at a single moment in time – what in physics
is called an event – looks in different frames of reference. An event in a frame is the triplet of its
position coordinates and its time coordinate: (x, y, z, t). For simplicity we will deal with situations
in which nothing changes with y or z, and thus each of our events will be indicated by (x, t).
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4 Common-sense Transformations

Consider two inertial frames of reference S and S′, moving with velocity v with respect to each
other.

Figure 1: Two inertial frames S (black) and S′ (red)

Common sense tells us that

x′ = x− vt
t′ = t

(2)

and, in the other direction,

x = x′ + vt′

t = t′.
(3)

If a object is moving along the x direction with velocity u as observed in S and with velocity u′ as
observed in S′, then

u′ = u− v (4)

Question: Use the common-sense transformations for coordinates and time to derive the
transformation for speed given above. (Speed is the rate of change of position; so you will
have to consider two successive positions and two successive moments.)

Question: Use the transformation for speed to show that the acceleration of an object is
the same in both S and S′.
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4.1 Invariance of Length

Our everyday experience leads us to believe that the length of an object is the same whether it is
stationary or moving. We therefore expect this invariance of length to be consistent with common-
sense relativity. The length of a rod laid along the x axis in the frame in which it is at rest is
the difference between the coordinates of its ends. When the the rod is moving with with respect,
however, its length is the difference between the coordinates of its ends only if these coordinates
are measured simultaneously. (Imagine trying to measure the length of a moving train, and you’ll
immediately understand why this so.)

Suppose that a rod is at rest in S′. It stretches between x′A and x′B . Thus its length is

L′ = x′B − x′A. (5)

Now consider how this looks to an observer in S. As mentioned above we must now measure the
coordinates of the two ends simultaneously, i.e. tA = tB .

L = (xB − xA)tA=tB = (x′B − x′A) + v(t′B − t′A) (6)

where t′A and t′B are the moments at which the coordinates of the ends of the rod are measured.
You can see that in general, as explained above, L = L′ = x′B − x′A only if t′B = t′A, i.e. if the
measurements of the coordinates are simultaneous in the rest frame of the rod as well as in the rest
frame. Thus, for the rod to have the same length in all frames, simultaneity in one frame must
imply simultaneity in other frames as well. And of course within common-sense relativity this is
true.

Figure 2: Length measurements in S (black) and S′ (red): L′ is the length measured by an observer
in S′ and L is the length measured by an observer in S.

Question: Consider three different inertial frames and check that length of a rod at rest
in one of them has the same length in all three frames.

4



4.2 Invariance of Simultaneity

We have seen that the frame-independence of length requires the frame-independence of simultaneity.
We must therefore ask what the frame-independence of simultaneity depends on. To investigate this,
let us consider the following thought experiment (a favourite theoretical device of Einstein’s). A box
of length L is at rest in frame S′, which is moving with respect to S with velocity v. The centre
of the box coincides with the centre of the common x− x′ axis, as shown in Figure (3a) below. At
t = t′ = 0, two objects/signals are emitted with equal speeds u′ (as measured in S′) in opposite
directions from the centre.

In S′ the distance travelled in each direction to the wall is L′/2, and therefore the time taken is
L′/2u′. The strikes on the walls are obviously simultaneous in frame S′. This implies that they
must be simultaneous in S as well.

(a) Emission (t = t′ = 0)

(b) Impact

Figure 3: Simultaneity in S (black) and S′ (red)

5



In S the object/signal travelling to the right must travel a distance L/2 + vtr, where tr is the time
it takes to travel from the point of emission to the right wall. The object/signal travelling to left
travels L/2 − vtl, where tl is the time it takes to travel from the point of emission to the left wall.
The travel times are given by

tr =
L/2 + vtr

ur
(7)

and

tl =
L/2− vtl

ul
. (8)

Notice that we must have tr = tl, since the events were simultaneous in the rest frame of the box,
and since simultaneity, in common-sense relativity, is frame-independent. But you can see that that
depends on how velocities add. Unless

tr (ur − v) = tl (ul + v), (9)

we will not be able to satisfy this condition. Fortunately, within this framework, ur = u′ + v and
ul = u′ − v, and so everything works out.

For the enthusiastic reader

Question: In the thought experiment let the emission take place from a point one-third of
the way between the walls. Then the time interval between the strikes on the right and left
walls is non-zero. Check that it is still the same in both frames of reference.

4.3 The Velocity Addition Law

The thought experiment above demonstrates how important the velocity-addition law is. It shows
that every object or signal must obey this law – else we would violate the requirement of common-
sense relativity that events simultaneous in one frame are simultaneous in all frames. Notice that
if u′ = u− v for everything that moves, then anything that moves with a finite velocity must have
different velocities in two inertial frames moving with respect to each other in the same direction as
the object/signal. The only velocity that can be the same in all frames is ∞.

4.4 The Problem with the Common-sense Transformations

What is the difficulty with this? The difficulty lies in the fact that that there does exist a frame-
independent velocity. Experiments show that light is observed to travel at the same speed, irrespec-
tive of the speed of the emitter or of the observer.

The only conclusion that can be drawn from this is that coordinate transformations arrived at
using common sense are incorrect. Yet, they are so obvious that if we try to modify the sense
(called common) that was used to arrive at them, we may go further astray. One way out may
be to approach the problem more formally – to ask ourselves what characteristics are desirable
in a set of transformations relating inertial frames, and see if we can thus arrive at the correct
transformations.
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5 The Desirable Properties of Coordinate Transformations

Since common sense has lead us astray, we will instead try to identify what is properties the trans-
formation must have to make physical sense. What we are looking for is a set of transformations
between the coordinates in S and S′ that has the following properties: (i) one event is mapped onto
one event, since one event is one event, no matter which frame we view it from; (ii) it is invertible,
and the inverse transformation corresponds to changing v to −v, since if S′ moves at v with respect
to S, then S must move at −v with respect to S′; and (iii) the parameters of the transformation
obey the basic properties of space, i.e. they are independent of position, direction, and instant
in time, implying that these parameters can only depend on the relative velocity. The simplest
transformation that do this are linear transformations:

x′ = a11 x+ a12 t

t′ = a21 x+ a22 t
(10)

where the aij depend only on the relative velocity v. Our job is to figure out the four aij using
physical arguments. (Reminder: we are using a convention in which when t = t′ = 0, x = x′ = 0, i.e.
the origins of the frames coincide at the initial instant in both frames.). The inverse transformations
are

x =
a22

D
x′ − a12

D
t′

t = −a21

D
x′ +

a11

D
t′

(11)

where D = a11a22 − a12a21.

Question: Check that the inverse transformations are correct.

When we say that S′ moves at a constant velocity v with respect to S along the x axis, what we
mean is that the rate at which the origin of S′ moves with respect to the origin of S is v; thus the
x coordinate of the origin of S′ is vt. The origin of S′ means x′ = 0. Thus,

when x′ = 0, we have that x = v t.

Putting this into the first of the equations above, we get a12 = −v a11.

Now let us look at S from S′. Now, using the same argument as above, we see that the x′ coordinate
of the origin of S is −v t′. (Notice that it’s now t′, and t and t′ may not any longer be the same.)
Similar to before,

when x = 0, we have that x′ = −v t′.

Putting this into the second set of equations above, we get a12 = −v a22. Combining this with the
result in the last paragraph, we get a11 = a22.

Question: Check that a11 = a22.
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Now let us write rewrite the transformations:

x′ = a11

(
x− v t

)
t′ = a11

(a21

a11
x+ t

)
= a11

(a21

a12

a12

a11
x+ t

)
= a11

(
− a21

a12
v x+ t

) (12)

Now let us get the velocity transformation law corresponding to this set of transformations. To get
velocity, we need two events – two positions x1 and x2 and the two corresponding times t1 and t2.
We will write ∆x = x2 − x1 etc. Thus

∆x′

∆t′
=

∆x
∆t − v

1− v a21

a12

∆x
∆t

(13)

or

u′ =
u− v

1− u v
k2

, (14)

where k2 = a12/a21. What we have above is the general velocity addition law consistent with the
Principle of Relativity and the properties of space and time

Question: Check (i) that in this velocity-addition law the dimension of k is velocity; and
(ii) that if u′ = k so is u.

The fact that if u′ = k, then u = k, implies that in this more general set of transformations
of coordinates between inertial frames, there exists a finite frame-independent velocity. You may
remember that in the common-sense transformations, where the velocity transformation law was
u′ = u− v, the only frame-independent velocity was ∞.

This general velocity transformation law allows both possibilities: (i) if k =∞ then we are just back
to the common-sense of Galilean transformations; and (ii) if k is finite, then we have another set of
transformations called the Lorentz Transformations. It is up to nature to decide which of these two
sets of transformations is correct. Experiments show that there exists a finite frame-independent
velocity – the velocity of light c. (So from now on we will write c in place of k.) Thus the correct
coordinate transformations between inertial frames are the Lorentz transformations.

5.1 Why do the Galilean Transformations seem Obvious?

This questions remains. The answer is that the frame-independent velocity that we see in nature,
the velocity of light, is very, very large: c = 300, 000 km/s! When the velocities of objects and
observers are small, i.e. if u and v are small, compared to c, then we effectively have the Galilean
transformations. Since our common sense has developed within this domain, it is not surprising that
it arrives naturally at the Galiliean transformations rather than the Lorentz transformations.
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5.2 The Last Constant

We still need to figure out a11. Inserting what we have just worked out, we have

x′ = a11

(
x− v t

)
t′ = a11

(
t− v

c2
x
) (15)

and

x =
a11

D

(
x′ + v t′

)
t =

a11

D

(
t′ +

v

c2
x′
)
.

(16)

Since the only difference between the forward and inverse transformations is that v goes to −v, we
have a11 = a11/D. Thus D = 1. Also

D = a11 a22 − a12 a21 = a2
11

(
1− a12 a21

a2
11

)
= a2

11

(
1− v2

c2

)
. (17)

It follows that a11 = 1/
√

1− v2/c2. This is universally denoted by the symbol γ. Thus the Lorentz
transformations are

x′ = γ
(
x− v t

)
t′ = γ

(
t− v

c2
x
) (18)

Question: (The second part of this exercise is for those who know matrices.) Show that
you can also write this set of transformations as

x′ = γ
(
x− v

c
c t
)

c t′ = γ
(
c t− v

c
x
) (19)

What is the advantage of writing the transformations like this?

Question: Now show that they can be written in the following form(
x′

c t′

)
= γ

(
1 −v/c
−v/c 1

)(
x
c t

)
(20)
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For the enthusiastic reader

What is the advantage of writing the transformations in this matrix form? Consider three
frames of reference So, S1, and S2. S1 moves at velocity v10 to the right with respect to
So, S2 moves at velocity v20 to the right with respect to So and velocity v21 with respect
to S1. First write coordinates in S2 with respect to those in S1, using the matrix form give
above. Then, on the right hand side of the equation, substitute the transformations for the
coordinates of S1 with respect to those in So, again using the matrix form. You will now
have a relation between the coordinates in S2 and those in So that has the product of two
matrices in between. But you can also write the same transformation directly between S2

and So, using a single matrix. Do that, and compare the two equations. What do you see?
Explore.

6 Some Consequences of Special Relativity

We can now go back to the two thought experiments we conducted at the start. As we argued
before, the fact that an observer in S and one in S′ agreed on simultaneous events was because of
the “common-sense” velocity addition law that we now know to be false. And similarly, the fact that
these observers also agreed upon the lengths of objects was because they agreed on simultaneous
events. Since the velocity addition law is no longer the same, it makes sense to re-examine these
two concepts: length and time-intervals.

Before we start, let us write down the Lorentz Transformations:

(A) ∆x′ = γ (∆x− v∆t)

(B) ∆t′ = γ
(

∆t− v

c2
∆x
)

(C) ∆x = γ (∆x′ + v∆t′)

(D) ∆t = γ
(

∆t′ +
v

c2
∆x′

)
(21)

6.1 Lengths

Let us consider, as before, that the object we are measuring is at rest in the frame S′, and its length
is being measured both from S (in which it is moving to the right with a velocity v) and S′ in which
it is at rest.

The observer in S requires to measure the endpoints of the object simultaneously in her frame of
reference, as otherwise the object would move between measurements. In other words, for (xB−xA)
to be the length, we require that ∆t = tB − tA = 0.1 Thus, we need to find a relation between
∆x and ∆x′, when ∆t = 0. We refer to Equation (21), and see that (A) is the transformation we
should use, as it relates these quantities.

1Note that we are not placing any condition on ∆t′. It may not be (and isn’t!) zero.
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∆x′ = γ (∆x− v∆t)

∆ x′
∣∣∣∣
∆t=0

= γ

(
∆x

∣∣∣∣
∆t=0

− v ∆t

∣∣∣∣
∆t=0

)

L′ = γL

Thus, the length that an observer measures when she is at rest with respect to the object (i.e. sitting
in S′) L′ is always greater than L, since γ > 1.

Thus, an observer sitting in S, with respect to whom the object is moving at a constant velocity
will measure a length L which is shorter: lengths contract !

Remember: to the person sitting in S′, the table will not look contracted at all! It is only
with respect to an observer in S that the object will appear contracted.

6.2 Time-intervals

In order to understand time-intervals, we perform another thought experiment. Consider a ‘light’
clock, which we make using a rod and an emitter and detector of light. A pulse of light is emitted
at one end of the rod, reflected at the other end, and detected back where it was emitted. Let us
place this clock in the frame S′ where it is moving with respect to S with a velocity v.

Figure 4: A light clock at rest in S′, observed from S. The light pulse emitted at one end of the rod
is reflected at the other end and detected back where it started from. The coordinates of emission
and detection in S′ are the same (x′A) but different when viewed from S, as the clock is moving with
respect to S.
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In the frame S′ an observer will see the light traverse the length of the rod twice and be detected
after some time ∆t′. What does an observer in S see? In order to relate these two observations, let
us consider the two events:

Event In S In S′

Emission: (xA, tA) (x′A, t
′
A)

Detection: (xB , tB) (x′A, t
′
B)

Notice that since the rod is moving with respect to an observer in S, emission and detection occur in
different points of space (xA and xB), but for an observer in S′, both emission and detection occur
at the same point (x′A)! Thus, ∆x′ = 0, even though ∆x 6= 0.

We would like to relate the time intervals that someone in S′ and someone in S measure. i.e. we
would like to relate ∆t to ∆t′, and we know that ∆x′ = 0 (in other words, the two events occur at
the same point in space according to someone in S′, the frame that it motionless with respect to the
clock). We look at Equation (21) and see that the equation relating the quantities we are interested
in is (D).

∆t = γ
(

∆t′ +
v

c2
∆x′

)
Since ∆x′ = 0,

∆t = γ
(

∆t′ +
v

c2
��∆x′

)
∆t = γ∆t′

Thus, ∆t > ∆t′, in other words intervals of time observed in S would appear to take longer than
the same intervals as measured in S′: time dilates!

Remember: as the person in S looks at her counterpart in S′, she will see time slow down
for the person in S′, and his lengths contract. However, according to the person is S′, he
will look at the world as if it were normal, and would rather see time slow down for the
observer in S (moving backwards) and her lengths contract!

Their views of the world are symmetric, and there is no way for either of them to say which
of them is “actually” moving. (You should now be convinced that this question makes no
sense.)
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Question: You may perform the same analysis above using only the fact that lengths
contract, and that the speed of light is constant:

1. Start by observing the event in S′: ask yourself how long the light takes to get reflected
and come back as a function of L′ and c; call this ∆t′.

2. Now observe the same event in S, and calculate the time interval ∆t as a function of
L and c.

3. c being constant for both observers, relate ∆t′ and ∆t by relating L and L′.
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