
Very Optional Problem Set – The Special Theory of Relativity

Physics for Pedestrians

1st August, 2019

I have Dr. Bikram Phookun (from St. Stephen’s College, Delhi) to thank for a large part of
these notes.

1 The Lorentz Transformations

The Lorentz transformations between inertial frames S and S′ moving at velocity v with respect to
each other along their common x axis are (for x = x′ when t = t′ = 0, i.e. for the origins of S and
S′ coinciding at the initial moment).

x′ = γ
(
x− v t

)
t′ = γ

(
t− v

c2
x
) (1)

Notice that the coordinates given above are really the differences between the coordinates at a given
time and those at the beginning, i.e. between the event (x, t), (x′, t′) and the event (0, 0) (which
has the same coordinates in both frames because of the initial coincidence of their origins). So it
is usually more useful to write the transformations in terms of differences between events. We will
write ∆x = xB − xA and ∆t = tB − tA, where the two events are (xA, tA) and (xB , tB). Thus we
have

∆x′ = γ
(

∆x− v∆t
)

∆t′ = γ
(

∆t− v

c2
∆x
) (2)

and the inverse transformations

∆x = γ
(

∆x′ + v∆t′
)

∆t = γ
(

∆t′ +
v

c2
∆x′

)
.

(3)

The factor γ = 1/
√

1 − v2/c2 is always greater than 1 for any v < c. (As we shall see, this conditions
always holds for material objects.) 1/γ is therefore always less than 1.
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2 Problems

1. Reread the requirements for length measurement given in the notes. Now consider a rod
that has length L′ in its rest frame S′. In common-sense relativity we found that it had the
same length in all other frames as well. Now we will find something different. In the way we
have written the transformations above, we can write L′ = ∆x′. The measurements of the
coordinates of the ends do not need to be simultaneous in S′, since the rod is at rest in this
frame. However, if its length L is measured in S, with respect to which it is moving, it is
necessary to make the measurements simultaneous. Thus we need the ∆x corresponding to
the ∆x′ = L′ under the condition that ∆t = 0.

(a) Show that under this condition ∆x′ = γ∆x.

(b) Thus show that L = L′/γ. Notice that L < L′.

Figure 1: Length measurements

2. Go back to discussion of simultaneity given in section 4.2 in the notes. Let us redo the thought
experiment with the Lorentz transformations. In the rest frame of the box. i.e. in S′, the time
taken for the objects/signals to reach the walls is clearly still L′/(2u′). So the strikes on the
walls are simultaneous in S′.

(a) Show that the speeds to the right and left are ur = (u′ + v)/(1 + u′ v/c2) and ul =
(u′ − v)/(1 − u′ v/c2).

(b) Show that tr = (L′/(2 γ) + v tr)/ur and tl = (L′/(2 γ) − v tl)/ul. Solve for tr and tl and
thus show that tr − tl = γ L′ v/c2. The strikes on the walls are not simultaneous in S.

Notice that in ∆t = γ L′ v/c2 the velocity of the objects does not appear.

3. In question above we determined ∆t = tr − tl using two objects/signals travelling at certain
undefined velocity. But surely we can equally use light instead of two objects/signals travelling
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Figure 2: Time measurements

at some undefined speed. In fact the calculation is much easier if you do this, because the
velocity of light c is the same in both directions!

(a) Show that now tr = (L′/(2 γ) + v tr)/c and tl = (L′/(2 γ) − v tl)/c.

(b) Thus show that ∆t = tr − tl = γ L′ v/c2, which is of course exactly what you got earlier.

The nature of the object/signal has nothing to do with the time interval here; it just helps us
to imagine the process. You will see that more clearly in the next question.

4. Let us practice using the ∆ notation. Thus we can write L′ = ∆x′, ∆t = tr − tl, and so on.

(a) Convince yourself that simultaneity in S′ means ∆t′ = 0.

(b) Now use the Lorentz transformations to show that in the physical situation considered
in the last question we have ∆t = γ∆x′ v/c2. Now substitute for ∆x′ to get the result
obtained in the last question.

Notice that when you write ∆t as γ∆x′ v/c2, you see clearly why the time interval is indepen-
dent of the object/signal that is used to probe it.

5. Now go back to the first question. The coordinates of the end of the rod are measured
simultaneously in S.

(a) Show that the two measurements are not simultaneous in S′; find the duration between
the events.

(b) The length of the rod in S′ is nevertheless equal to ∆x′. Why?

6. Let us modify our thought experiment in the question above so that the light ray starts out
at one end, reflects off the wall, and returns to the point of emission, as shown in Figure 4.
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Figure 3: Light signals and simultaneity

Figure 4: Light signals and proper time

(a) Show that in the rest frame of the box, the time taken for the round trip is ∆t′ =
2L′/c.This is called a proper time interval – it is special because there is no change in
the position coordinate between the first event (emission) and the second (detection). It
is the time interval that would be measured by a stationary clock.

(b) Show that the ∆t corresponding to this pair of events is γ∆t′. Since γ > 1 we call this
time dilation.

(c) Convince yourself that the order of the events remains the same in all frames, so long as
the velocity of the rest frame is less than c. If this were not true, we would have bizarre
situations like events occurring in one sequence in one frame and in the opposite sequence
in another frame, making non-sense of cause and effect. No objects/signals/influences
ever travel at speeds greater than that of light.

7. In the common-sense world, the length of an object L remains the same in all frames of
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reference. We would like to discover if there is anything that remains constant in all frames of
reference. Show that ∆s2 = −c2∆t2 + L2 is the same in all frames of reference. Notice that
for light ∆s, which is called “interval” within the framework of Einstein, is 0 in all frames of
reference; this is just another way of saying that the velocity of light is the same in all frames
of reference.

8. One very nice way to represent the evolution of an event in time is to draw what is called a
world-line on a space-time diagram. This diagram has c t on the vertical axis and x on the
horizontal axis. The diagram (see Figure 5) below shows the world-line for an object at rest
in the frame shown, at a point x1. Stare at the diagram for a while and you’ll get it. Draw
the world-lines for the following situations:

(a) an object at rest at some other point x2;

(b) an object moving at velocity v.

(c) a light ray moving to the right and another light ray moving to the left.

Figure 5: World-line for an object at rest

Notice that the two light rays mark out a cone, called the light cone. If any event occurs at
the origin of the light cone, it can influence events only within the light cone, since otherwise
the influence would have to travel faster than light.

9. We will now study something slightly more difficult: the composition (combination) of Lorentz
transformations. Consider three inertial frames of reference, So, S1, and S2. S1 moves with
respect to So at v10; S2 moves with respect to So at v20 and with respect to S1 at v21. We
thus have three γs: γ10 = 1/

√
1 − v210/c

2, γ20 = 1/
√

1 − v220/c
2, and γ21 = 1/

√
1 − v221/c

2.

Show that
γ20 = γ21 γ10

(
1 +

v21 v10
c2

)
(4)
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Figure 6: Composition of Lorentz Transformations

If you know how to handle matrices and use the matrix representation of the Lorentz trans-
formations given in the last problem of the notes, you can do this very easily; otherwise it will
involve a lot of algebra.

10. Consider a rod at rest in frame So. Its length in this frame is L′. Determine its length as
observed in S1 and S2.What is L2/L1? Notice that it is not equal to γ21. In other words the
length contraction factor of an object in any frame is 1/γ only when it is at rest in one of the
frames. This subtle point has very important ramifications.

11. Imagine an infinite wire carrying electric charge distributed uniformly, with charge per unit
length λo in So, λ1 in S1, and λ2 in S2. Assuming that electric charge appears the same in all
frames (which is known to be true), how are the three λs related? The answer follows directly
from the last question. Think of the infinite wire as a series of rods, like the one in the last
question. Since each rod undergoes length contraction, the answer follows.

12. Imagine two infinite charged wires, one with positive charge and the other with negative charge.
In a certain frame the positive wire is at rest, and the negative wire is moving to the right
with velocity u. In this frame the density of positive charge is exactly equal and opposite to
the density of negative charges, so that the net charge density is 0. Now look at the system
from a frame moving along the wire with a velocity v. Do the positive and negative charges
still cancel each other out?
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