Lecture 8 — The Quantum World

Physics for Pedestrians

8th August, 2019

1 The Problems with Classical Physics

1.1 The Atom

As explained in the last class, there seemed to be a pleasing symmetry between the physics of the
large scale (the solar system) and that of the small scale (the atom). Both of these systems had very
similar (albeit different) forces acting on them.

The force that held the solar system was gravity, and Newton told us that
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From the studies on Electromagnetism in the 1800s (which I have sadly skipped throughout this
course), it was found that there existed another much stronger force that affected charged particles,
known as the Couloumb Force:
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Now, since the forces looked similar, so should the solutions. From Newton’s analyses, we know that
the planets take orbits around the sun that are elliptical, but very nearly circular. Their distance
from the sun can thus be given by the following equation
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For the enthusiastic reader

The actual orbits are elliptical, and their solutions are actually given by
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The term e can then be taken to 0 if the orbit is circular.

The quantity L is angular momentum, a conserved quantity we discussed earlier that depends on
an objects momentum, and its distance from an axis of rotation. It is the quantity that is conserved
for an object that is rotating.

L = mor (4)

Since atoms are known to be spherical, the same equation holds there as well. Thus, if one knows
the angular momentum of the atom, one could just as well solve for the radius of an atom
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D = K.e* e is the charge of the electron

r

We just need to cover one last thing now: energy. In a circular orbit, the kinetic energy of the planet
(or electron) is half the potential energy. And the potential energy is given by
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Thus, the total energy (using the fact that K.E. = 1/2 P.E.
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This, again, should be true for both the planets around the solar system as well as atoms.

However, there is a clear difference:

[ Accelerated charges emit electromagnetic radiation (light). ]

And so, as the electron orbits around the nucleus, it is clearly accelerating, meaning that it radiates
energy. However, in doing so, its total energy reduces, which means that its radius should also
reduce! The classical atom is not stable: electrons will eventually fall into the nucleus!

Question: Show that as E T, r |.
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Figure 1: The emission lines of Hydrogen: they are discrete, meaning that between any two lines
there is a gap with no light emitted. This is very different from the spectrum that you see when you
split the light of the sun, for example.

So, in the classical atom, the electron would then be expected to radiate a continuous range of
colours (“frequencies”) as it fell into the proton. It seems as if classical physics predicts that we
cannot exist!!

1.2 Discrete Spectra

As if that wasn’t enough, when even the simplest atoms were observed, it was found that they didn’t
have continuous spectra. Instead, they seemed to emit light in specific frequencies, shown in Figure
(1). Johann Balmer, a Swiss mathematician and schoolteacher, came up with an empirical formula
that described the positions of these lines qualitatively. Johannes Rydberg, a Swedish physicist

generalised this formula to
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where A is the wavelength of light emitted, and n and m are any two integers, and R is a constant
called the Rydberg constant, which was known experimentally to great accuracy. Every wavelength
seemed to be associated to a pair of integers, and there seemed to be no reason for this.

R=1.097 x 10"m~*

Using this formula, people could predict where lines would be found, and sure enough they
were right. Was this a new law? Would R be found to be a new constant of Nature, just as
h was? It worked, but why?

2 Bohr’s Atom

German physicist Niels Bohr had two radical ideas that he thought would solve this problem:

1But, T hope I will not have to work to convince you, we do exist.



1. Maybe there were some special orbits in which atoms did not radiate. (Of course, this went
completely against Newton’s Laws. According to the solar system model of the atom, no orbit
should be “special”.)

2. Maybe the atoms absorbed and emitted light in discrete amounts, which made the electrons of
the atom “jump” between these orbits. (Of course, this went against the established theories
of Electromagnetism.)

Bohr really wasn’t making any friends. So why then were his ideas entertained? It turns out, these
assumptions worked rather well to describe the physical world, as we shall see.

2.1 De Broglie’s Hypothesis

Louis De Broglie proposed a hypothesis: if light (which acts so much like a wave) could behave
as particles do, perhaps other objects that we thought of as “particles” could behave as waves
do?

De Broglie attempted to associate a wavelength to electrons, which depended on their momentum.
This “de Broglie” wavelength is given by

A= o (8)
This hypothesis, he felt, would answer the question as to why only special orbits were allowed in the
atom. Consider waves set up on a string that’s fixed at both ends, only some types of waves would
be allowed — all those that had a fixed number of wavelengths in between the end points (see Figure
(2)). If this were not the case, the waves would interfere destructively and die out. Only waves that
interfered “constructively” would survive.
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Figure 2: Just as the waves on a string (a) must be an integer number of wavelengths, so de
Broglie hypothesised, should the waves in a circular orbit of an atom. (b) If the waves interfered
constructively, the orbit would be allowed. (c) If they interfered destructively, the orbit would be
forbidden.



Thus, in order for this to work, the circumference of these special orbits should be related to their
de Broglie wavelengths by (at most) an integer. Thus,
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The quantity h/(27) appears so often in this subject that it has it’s own name, A.> From the
above calculation (which you should be able to reproduce), it looks as if the angular momentum is
quantised, meaning that it comes in little lumps of &, 2A, 3k, and so on. There is no possibility of
getting angular momentum of 1.3A.

With this, we can now figure out the radius of a circular orbit (assuming our solar-system model)
from Equation (3).
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Question: Show that the first orbit has a radius

52
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1
Question: Show that any other orbit r, is given by

T = n’ry (12)

The natural unit of length for the atomic scale is thus r; which is called the Bohr radius. Plugging
in the values of the different constants, we can find that

r1 ~ 0.5 x 10 = 0.5 A

The unit Angstrom, denoted by A, is 1071° m, and is the natural unit of length when dealing
with phenomena at the atomic scale.

Thus, de Broglie’s hypothesis had explained the first of Bohr’s assumptions: electrons seem to live
in certain privileged orbits, since these are the orbits where their “waves” interfere constructively.
What was left was to explain the discrete spectrum.

2Pronounced “h-bar”.



2.2 Leap-frogging electrons

Let us now consider the energy of these orbits. From Equation (6), we know that the energy depends
on the radius, and thus for every orbit with radius r,, = n?ry, there is a specific energy.
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We are now ready to explain Rydberg’s formula. Suppose, as Einstein had already shown, that
light is absorbed or emitted in chunks of energy F = hf. Atoms would only be able to emit (or
absorb) certain frequencies when their electrons leap from one orbit to the other. An electron from
a higher (or more “excited”) orbit would fall to a lower orbit and emit radiation, and could absorb
a photon and jump to a higher energetic orbit, or could emit a photon and jump to an orbit with
lower energy.

Question: Show that if an electron jumps from a higher orbit with energy E,, to a lower
orbit with energy F,,, and if all this energy is converted into light, then the light is emitted
with a frequency given by
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Question: What would happen if it was jumping from a lower to a higher orbit?
Answer: The earlier number would be negative, but that would just mean that it was
absorbing a photon, instead of emitting it.

Question: Plug in the value of F,, and E,, from Equation (14) to find that:

p D2M<11> (16)
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Question: Relating the frequency of light f to its wavelength A and speed ¢, show that
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Rydberg constant (R)

For the enthusiastic reader

Question: By plugging in the values of the different physical constants, show that the
numerical values of R agree.

Thus, we have shown why the empirical relation given by Rydberg works, and we have explained
his “constant” in terms of more fundamental constants of Nature.



It is in this sense that scientists try to unify theories: if the constant parameters (which you have no
liberty to change) in one theory can be described in terms of the constant parameters of some other
theory, then we say that the first theory is a result of the second: the two have been unified.

3 The Spooky World of Quantum Mechanics

Now you may not truly believe that electrons behave like waves. Let’s ask ourselves what this would
mean. Very much as with light, a deciding factor between whether it behaves like a classical particle
or classical wave would be some sort of double-slit experiment. This is exactly what Feynman
proposed, and was actually carried out by Akira Tonomura and his team at Hitachi in 1989. (You
can see the video .) The result is astouning: electrons behave like waves of a wavelength exactly
predicted by de Broglie:

A==
p

This is only strange if you consider the electrons as going through one or the other slit. This idea
is inconsistent with experiment. It turns out that there is only one consistent way to describe
this system and what is happening in it, and it’s not easy.

We'll try to describe the weirder aspects of it, and see what exactly this means. I must warn you,
though: it’s an unsettling story, perhaps the most unsettling story that’s ever come out of physical
experiments.

Consider a bunch of happy little electrons, going about their own business. Let us say that these
electrons have two properties, shape and colour. They can be either square (H, W) or circular (®, ®),

or red ([°]) or black ([°]).

The experiments I'm going to talk about have all actually been carried out, though not necessar-
ily with electrons. The big daddy, so to speak, of these experiments is called the Stern-Gerlach
experiment. Look it up if you're interested.

Let us now say that someone has made us “colour” and “shape” machines that can sort these
electrons for us (see Figure (3).)
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Figure 3: Colour and shape sorting boxes: electrons that come out of these boxes are found to all
be (a) either red or black, or (b) either circle or square. In every case, the ratio is 50:50.


https://www.youtube.com/watch?v=jvO0P5-SMxk

Experiments are performed to find out how many electrons are black and how many red, and it is
found that half of all the electrons sent into the box are black, and half red. The same result is
found with the shape box, where half are found to be circular and half square.

It is important to mention at this juncture that the actual mechanisms of the box do not
matter at all: scientists have made many such boxes in very very different ways, and the
results have always been the same.

A natural question to ask at this juncture is the following: are colour and shape correlated? This can
be resolved in an easy way: consider all possible colour and shape combinations: pass an electron
first through a colour box, and then through a shape box, and count the different ratios of both
types. Then do the same thing by passing it through a shape box and a colour box. The results,
in each case, show that there are always 50% of each type. It seems that there is no correlation
between colour and shape.

Suppose now we take the electrons that leave the black end of a colour box, and pass them through
another colour box, as shown in Figure (4), then they are all found to be black. Indeed, this is the
meaning of a colour box. The same thing happens with a shape box.
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Figure 4: Of all the electrons produced, 50% are red and 50% black. If the 50% are found to be
black are passed through another colour box, they are all found to be black.

The percentages given in the figures all represent the percentage with respect to the number
of electrons that entered that detector, not the total number of electrons.

Everyone ok so far? Good. Now let’s consider three different experiments that go from simpler to
more complicated. In each of the cases below, the electrons are sent in one at a time, they don’t
interact with each other.

3.1 Experiment 1

Consider a case where we pass the electrons one by one through a colour box, and then collect only
the black electrons and pass them through a shape box. We then pass only those of the resulting
electrons (which should all be square) through another colour box. What would you expect?



You would probably reason that since the electrons you sent through the shape box were black, then
those that exited the shape box were also black (albeit square), and so when you measure them
again you’d expect them to all be black. However, you’d be wrong. What actually happens is that
we get 50% each of black and red electrons!
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(a) What you would expect to happen in Experiment 1
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(b) What actually happens in Experiment 1

Figure 5: (a) The results one would expect from Experiment 1, and (b) what actually happens.
Important: percentages given next to boxes are with respect to the number of electrons that enter
that box. The conclusion is simple: shape measurements seem to randomise colour.

This is very strange, as all we have done in this case (which differs from the last) is place a shape
box in between two colour boxes. And the result has changed! It seems that shape and colour are
correlated!

Remember, this works even when the electrons are sent in one by one! The measurement of
shape randomises the colour of each electron.

3.2 Experiment 2

Let’s now move to a slightly more complicated problem: electrons are passed first through a colour
box, and the black ones are passed then through a shape box. Both shapes move along different



paths, “bounce” off mirrors and are recombined in a “beam-splitter”? and passed through another
shape box.

What do you think would happen? Well, since we’'ve seen that when electrons of a certain shape
enter a colour box, their colours are 50/50, perhaps this means that when electrons of a certain
colour enter a shape box, their shapes are 50/50. In other words, perhaps there are 50% of squares
and 50% of circles, which then recombine at the beam-splitter, giving again 50/50 of square and
circle. And indeed, this is exactly what we see.

Whew! Our intuition is not completely wrong then!
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Figure 6: What you would expect to happen (and what does actually happen) in Experiment 2: the
colour measurement randomises the shapes.

Feeling a little better? Well here’s where it gets really weird.

3.3 Experiment 3a

Let’s now change the measurement at the end to a colour measurement. What now? Well, since
we seem to think that shape measurements randomise colour (as we’ve seen — or rather, think we’ve
seen — in the previous experiment), it wouldn’t be too far a stretch to imagine that the result would
give us 50/50 of red and black.

Too bad! We get 100% of black electrons! Not a single red electron is found. Black electrons went
into the first shape box, and only black electrons were found after the two different shapes were
recombined!

3Don’t worry about what this is, it’s just a complicated mirror that joins two beams and sends out one. The
mechanisms of these mirrors and beam-splitters are unimportant: the experiment works the same way no matter
what.
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(a) What you might expect to happen in Experiment 3a
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(b) What actually happens in Experiment 3a
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Figure 7: Despite measuring the shape, when the colour is measured again (after the different shapes
are recombined and hence “unknown” once more) all the electrons are black, as you would naively
have supposed!

So you see that what we’ve seen so far is even more puzzling than we thought. It’s not just
that the measurement of shape randomises colour and the measurement of colour randomises
shape, it’s far more insidious: knowledge of the shape precludes knowledge of the colour,
and knowledge of the colour precludes knowledge of the shape.

Since in Experiment 3(a) we couldn’t know the shape of the electrons (since they were both
mixed at the beam splitter) we were able to know everything about their colour!

11



Question: Go back and look at the other experiments using this idea. Make sure you
understand how all their results can be explained using this principle: knowing® the shapes
means that the colour is random, and knowing the colour means that the shapes are random.

%As opposed to simply measuring.

3.4 Experiment 3b

You're annoyed by this, and rightly so. You decide to push Nature into a corner, because she’s really
misbehaving rather badly. You take the same experiment that you just carried out (Experiment 3a)
and now you place a wall along one of the arms. Furthermore, you don’t want these sneaky electrons
talking to each other, and so you make the arms millions of kilometres long, so that no information
about the wall can get to the electron going along the other arm (without the wall).

Let’s think this through: in this case, we know that the electrons that reach the beam-splitter are all
circular (since the square path has been blocked). From our earlier analysis, you should realise that
if we know the electron’s shape, then its colour should be completely random. And this is indeed
the case! We could do the same experiment, with the wall along the circular path and (happily)
we’d get the same answer.

But remember, we’re sending one electron in at a time! So what did this electron do? Well, let’s
examine the possibilities that logic allows us:

1. It took the circular path: Well, this is not possible, since if all electrons did this, there
would be no difference between the experiments with and without the wall (but there certainly
is!).

2. It took the square path: Well, that’s now possible either, since the square path was walled
up.

3. It took both paths: This is tempting: perhaps our sneaky little electrons “split” into two,
and took both paths simultaneous. The problem is, we could put a detector along the paths

and we would never find half-an-electron. Electrons come in fixed lumps, and so it must have
taken one path or the other.

4. It took neither path: This is just silly, I hope you don’t need me to explain why this isn’t
the case, but even so: if we walled up both the arms, no electrons would be detected at all.

So what is the right answer? It looks like all logical possibilities have been exhausted. And indeed
— in our current way of looking at the world — they have. The only answer we can give is that in
between measurements, the electron was doing something strange: it was in a superposition of going
along the square path and the circular path at the same time.

3.5 Superpositions
So far, the word superposition is just a fancy way of saying “We don’t really know what it’s doing”.

Let’s use it in a sentence: in Experiment 1, the measurement of the electrons state caused it to be
in a superposition of red and black states.

12
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(a) Placing a wall in the square path randomises the results of colour.

50% g
Red
$ 509
‘.&}0 Beam-splitter C ‘)Dn/c
IS A
Black

[}
50% B0 £
Red @ S
50%

e~ On y A
__________________ &
On ? Square «'\\*5
Black =

(b) Placing a wall in the circle path also randomises the colour.

Figure 8: Experiment 3a with a slight modification: a wall is placed in one of the arms, and the arms
are made so long that the electrons can’t communicate with each other. Analysing this ‘classically’,
we exhaust all our logical possibilities. We thus say that the electron is in a superposition of both
paths.

Let’s try to put some mathematics to this: it turns out in order to do this, we need to speak of
something called the state of a system. The electron may be in a state of colour (red or black) or in
a state of shape (square or circle) but the knowledge of the electrons colour places the electron into a
superposition of shape states, and the knowledge of an electron’s shape forces it into a superposition
of colour states.

Let’s denote the state by this little symbol |state).* Since the superposition looks a little like a

4Pronounced “ket”. This notation is due to Dirac, and is very useful to physicists. It is also an attempt at physicist
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“sum” of two states, let’s be bold and denote it by the following: say that the state “red” is a
superposition of square and circle:

o) = m) + @)

Of course, the state “black” is also a superposition of square and circle, but it cannot be the same
superposition as then it would be the same state. We guess that perhaps it could be a — sign in
between the terms:

) = m) — @)

You can possibly now understand why we used the “+” and “—” signs. We could now try to add
the two equations given above to find how the |M) state can be written as a superposition of |@>

and ||§]>!

Question: Show that by adding the two equations given above you get that

=515+ 5 1=

Of course, the factor of half that comes in front of the equation is distasteful: the states of colour
and shape are equivalent (as we have seen with our experiments), and so it would be nice if this
symmetry manifested itself in the mathematics.

7~

Question: Show that if — instead of the earlier equation we’d written — we had chosen the
following for the colour states:

1 1
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Then the corresponding equations for the shape states are
1 1
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(This question might seem a lot harder it actually is. It’s just addition, make sure you do
it.)

.

In general, an electron can be in any state which is a combination of the above. This is what we
call (mathematically, at least, since other language fails us), a superposition. Thus, any state, for
example,

humour. The “ket” has an equivalent double who appears very often, called the “bra”, denoted by (state|. I will leave
it to you to figure out what the quantity (statej|statez) (which appears often), is called.

14



) =a|le]) + b|m)

is allowed. These constants a and b are known as the probability amplitudes, as Feynman discusses
in the reading. Their name again is a result of our ignorance. We’ve found that these quantities
seem to add in ways we understand.

In the case of waves, the heights (or amplitudes) of the waves added, but their intensities didn’t.
With matter waves (like electrons) we found that the probabilities of their detection didn’t add. But
these constants (a and b) do, and so we call them probability amplitudes.

The probabilities of an electron being in a state can be found by squaring these numbers (just as
the intensities of classical waves can be got by squaring the amplitudes).

Thus, when an electron is in the “square” state, it has a 50% chance ((%)2> of being red and the
same of being black!

Question: Go back and try to explain all the results of the experiments we conducted using
these “states” and probabilities.
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