
PHY1110 – Mathematical and Computational Toolkit Spring 2020

Assignment 11:
The Taylor Series

Suggested Submission: April 30, 2020 (Thursday) Marks: 15

1 Introduction and Derivation of the Taylor Expansion

The Taylor expansion is one of the most important tools in a physicist’s toolkit. It allows us to ex-
amine the behaviour of different functions locally, i.e. in the vicinity of a point say, where some
interesting physics happens. Or the expansion may allow an approximation that makes our cal-
culation easy.

From the definition of the derivative in our first few lectures, we have seen that

f (x +∆x) ≈ f (x)+∆x f ′(x).

We say that such an equation is approximate since it is in general true only up to the first order in
∆x. We are interested in finding an expression for f (x+∆x) that is true for all values of∆x.

To make it clear, we can begin by writing our earlier approximation like this:

f (x +∆x) =
(
1+∆x

d

dx

)
f (x).

This allows us to interpret the quantity 1+∆x d
dx as an infinitesimal translation operator, since

it acts on the function f (x) and translates it to the point x +∆x. By ‘infinitesimal’ we mean that
this is true up to the first order in ∆x. However, since such a translation is a continuous process,
it can be broken into smaller constituent operations.

In other words, we could think of a translation of ∆x as a succession of n translations of ∆x/n.
Now, each translation by ∆x/n is given by the infinitesimal translation operator

1+ ∆x

n

d

dx
,

and so

f

(
x + ∆x

n

)
=

(
1+∆x

d

dx

)
f (x)

f

(
x +2

∆x

n

)
=

(
1+∆x

d

dx

)
f (x +∆x) =

(
1+∆x

d

dx

)2

f (x)

...

f (x +∆x) =
(
1+∆x

d

dx

)n

f (x)
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Of course, we could now imagine that we made n larger and larger, by which you are essentially
dividing the region into finer and finer intervals. Thus,

f (x +∆x) = lim
n→∞

(
1+∆x

d

dx

)n

f (x).

In the above expression, you should recognise the definition of the exponential function which
can itself be written as a famous series,

e y = lim
n→∞

(
1+ y

n

)n
= 1+x + x2

2!
+ x3

3!
+ . . .+ xn

n!
+ . . . ,

Our expression for f (x +∆x) is thus given by

f (x +∆x) = e∆x d
dx f (x),

where the first term is an operator, called the finite translation operator. (You will hear more
about this in your course in Quantum Mechanics at the start of your third year.) When this op-
erator is expressed in terms of the standard series for the exponential, you get the Taylor Se-
ries:

f (x +∆x) =
(
1+∆x

d

dx
+ (∆x)2

2!

d2

dx2 + . . .+ (∆x)n

n!

dn

dxn + . . .

)
f (x).

Since there is no longer a requirement that ∆x be small, it is conventional to write the Taylor
Series about the point x = a as:

f (a +x) = f (a)+x
d f

dx

∣∣∣∣
x=a

+ x2

2!

d2 f

dx2

∣∣∣∣
x=a

+ . . .+ xn

n!

dn f

dxn

∣∣∣∣
x=a

+ . . . . (1)

For a Taylor Series to make sense, it must converge. To determine the radius of convergence of
a Taylor Series we should think of x as a complex variable. The region of convergence of the
series (i.e. the maximum value of ∆x for which the expansion gives the right answer) is a disk
with the point at which the expansion is being done at the centre, and the nearest singularity of
the function on the complex plane at the boundary. (Don’t worry if this doesn’t make sense to
you right now, you can just accept it.) For example, consider the function

f (x) = 1

1−x
.

It is a very instructive exercise to expand it about the point x = 0, and show that

f (0+x) = 1+x +x2 +x3 + . . .
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The Taylor Series formula is very useful. However, it has one limitation that it needs an
arbitrary number of derivatives to be computed, which is not – in general – simple to do
by hand. There is, thankfully, a useful fact about the Taylor Series that can help us: it is
unique. This means that if you could come up with a series for f (x) by “accident”, then
it is guaranteed to be the actual series (provided certain mathematical qualifications are
satisfied that, frankly, I’ve not had to use so far so I can safely say can be ignored by the
average physics student for a while).
This is useful because the series for

1

1−x

can be obtained by using the geometric series approach that you might have learnt in
school, which is a much easier technique to compute it. Furthermore, if we now wanted
to use this to calculate the series for

f (x) = 1

1+x
,

all we’d need to do is take the series we already have and replace x →−x, so that we have
f (x) = 1−x +x2 −x3 + . . .!

2 Problems:

(a) Begin by computing the series for ex using Equation (1). [2]

(b) Compute the Taylor Series for the following functions using Equation (1): [4]

(i) sin(x),

(ii) cos(x),

(c) Show that e i x = cos(x)+ i sin(x) using the series obtained above. [2]

(d) Derive the series for 1
1−x using the geometric series approach. Using only this series (i.e.

without using Equation (1)), find the series for: [2]

(i)
1

(1−x)2 ,

(ii) log(1−x)

(e) Computation: Write a program to calculate the partial sums of the first n terms of the
Taylor series expansions about x = 0 of sin(x),cos(x),ex , and log(1+x). For each of these
functions, plot a graph of the “actual” function as well as two partial sums for different
values of n, and explore how well the series converges. [5]
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