Assignment 3: Affine Spaces in Physics

Due: February 20, 2020 (Thursday) Marks: 15

1 Affine Transformations

- (a) One very nice way to represent the evolution of an event in time is to draw what is called a *world-line* on a space-time diagram. This diagram has *t* on the vertical axis and *x* on the horizontal axis. For example, Figure (1) below shows the world-line for an object at rest in some coordinate system, at some point *x*₁. (Stare at it for a while and you'll get it.) Draw the world-lines for the following situations:
 - (i) An object at rest at some other point x_2 .
 - (ii) An object moving with a velocity v, which is at x_1 when t = 0.
 - (iii) An object moving with a velocity -v, which is at x_1 when t = 0.

Figure 1: A spacetime diagram for an object at rest: the object's remains at x_1 as time passes by.

- (b) Consider the following transformations, and discuss whether they are affine transformations or not. [2]
 - (i) Choosing a different unit of distance to measure the *x*-axis.
 - (ii) Choosing a different unit of time to measure the γ -axis.
- (c) Now suppose the object is (say) a squirrel. You and the squirrel are at a train station: the squirrel is on the platform and you're on a train that is at rest, separated by some distance *d* metres at some time *t* = 0 seconds.[5]

- (i) Sketch the squirrel's world-line according to itself and the squirrel's world-line according to you on the same space-time diagram.
- (ii) Now imagine the train on which you are begins moving at a constant velocity v. Sketch the same diagram as before.
- (iii) In the above two cases, is the transformation that takes you from one to the other *affine*? In other words, is the transformation that takes you from the squirrel's "point-of-view" to your "point-of-view" an affine transformation?
- (iv) Now suppose that the train began to accelerate at a constant rate. Sketch the same diagram again. Is the transformation still affine?
- (v) Consider the set of world-lines on the platform shown in Figure (2). How do they transform the train starts to move a constant v?

Figure 2: A spacetime diagram for an array of objects on the platform. What is seen from the moving train?

2 Bases in \mathbb{R}^2

We saw in class that any vector in \mathbb{R}^2 can be described using the (natural) basis \hat{e}_1 and \hat{e}_2 (shown below). However, we have also seen that this basis is not unique, and that we could choose another basis, for example \hat{e}'_1 and \hat{e}'_2 : [5]

$$\hat{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\hat{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\hat{e}_1' = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\hat{e}_2' = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

(a) Show that \hat{e}'_1 and \hat{e}'_2 are linearly independent.

(b) Take an arbitrary vector \mathbf{v} and express it in terms of the \hat{e}_i s and \hat{e}_i' s respectively:

$$\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix} = Ae_1 + Be_2$$
$$= A'e'_1 + B'e'_2.$$

Determine A, B and A', B' in terms of a and b.

- (c) Express \hat{e}'_1 in terms of \hat{e}_1 and \hat{e}_2 , and do the same for \hat{e}'_2 .
- (d) Define a *new* basis of your choosing, and repeat the above procedure.