Assignment 4: Linear Transformations and Matrices

Due: February 27, 2020 (Thursday) Marks: 15

1 Linear Transformations

- (a) Consider the following transformations, and check whether they are linear or not. Justify your responses using the defining properties of linear transformations. In the case of a non-linear transformation, give an example of one case where a defining property fails. [4]
 - (i) A transformation $\mathcal{F}: \mathbb{R}^3 \to \mathbb{R}^2$, defined by

$$\mathscr{F}\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\right) = \begin{pmatrix} 2x_1 + x_3 \\ -4x_2 \end{pmatrix}$$

(ii) A transformation $\mathcal{G}: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$\mathscr{G}\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\right) = \begin{pmatrix} 4x_1 + 2x_2 \\ 0 \\ x_1 + 3x_3 - 2 \end{pmatrix}$$

- (b) Consider the *Rotation matrix* $R(\theta)$ defined as we saw in class, which rotates a vector by an angle θ counter-clockwise. Show the following properties and interpret the results: [1]
 - (i) $R(\theta_1) \cdot R(\theta_2) = R(\theta_1 + \theta_2)$
 - (ii) $R(\theta) \cdot R(-\theta) = 1$

2 The Metric and the Determinant

- (a) In class, we defined the metric to be the usual "Euclidean" one. However, there is no reason for this to be the only metric on a space that satisfies the required properties. Check if the following maps from R² → R could constitute a "metric".¹
 - (i) $g(v, w) = \sqrt{-(v_1 w_1)^2 + (v_2 w_2)^2}$
 - (ii) $g(v, w) = \sqrt{(v_1 w_1)^3 + (v_2 w_2)^3}$

¹You only need to check if the three properties spoken about in the lecture hold.

(iii)
$$g(v, w) = \sqrt{(v_1 - w_1)^4 + (v_2 - w_2)^4}$$

(b) Consider the following transformation S_1 that transforms the unit vectors \hat{e}_1 and \hat{e}_2 as follows:

$$S_1: \hat{e}_1 \to \frac{\hat{e}_1 - \hat{e}_2}{2},$$

 $S_1: \hat{e}_2 \to \frac{\hat{e}_1 + 3\hat{e}_2}{2}$

- (i) Consider a rectangle under the action of this transformation. Describe physically what's happening here, and calculate the area from your diagram.
- (ii) Obtain the matrix representing S_1 , and show that its determinant is equal to the calculated area.

3 Programming

- (a) Write a code which asks the user to input the x and y components of a vector in \mathbb{R}^2 . [1]
- (b) Define a function rotate_vector, which accepts two arguments a vector v and an angle theta and returns the original vector v rotated by the angle theta. [3]
- (c) Define a function vector_length which accepts one argument a vector v and returns its length. Check that the rotated vector and the original vector have the same length. [1]