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1 Discretising a differential equation

In this Discussion Session we will attempt to describe a physical system using a computer program in
Python. We will do this by discretising the differential equation, having chosen an appropriately small dt
as discussed in the first Discussion Session. From the class, you should remember that we can approxi-
mate the derivative of a function (say, the position x(t ) of a particle) by:

dx

dt
≈ ∆x

∆t
,

which is true up to some given precision that decides how small the value of ∆t is. As ∆t → 0, the approx-
imation becomes more and more precise.

So how do we use this to solve a differential equation? Before we start, there are two important concepts
to address: the kinematics and the dynamics.

1.1 Kinematics

By the kinematics of a system, we mean the equations that govern how a particle moves. These are
“common-sense” equations, they arise from the very definitions of the concepts of position, velocity, and
acceleration. For example, let’s consider the motion of a particle in one dimension, which we assume
follows some well defined function x(t ). We define the velocity of a particle to be the rate of change of
position, therefore

v ≡ dx

dt
.

When we discretise this system with a sufficiently small∆t , what we mean is that over this interval∆t , the
position of the particle changes by an amount ∆x, where

∆x = v(t )∆t .

Similarly, we know that the acceleration of a particle is defined by the rate of change of velocity

a ≡ dv

dt
.

In our discretised scheme, this just means that the change in velocity over some small time interval ∆t is
given by

∆v = a(t )∆t ,
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and so on for all the higher derivatives of position. In both the above cases, you’ll note that we use the
values of the function v(t ) and a(t ) at the time t . This is because when we discretise the system, we are
implicitly assuming that these functions are constant over that ∆t . Furthermore, the quantities v(t ) and
a(t ) might themselves change as a function of time, which would in turn change x(t ) and v(t ) respectively,
and so on.

Using this technique, you can solve rudimentary problems quite simply: suppose you have a ball falling
under a constant gravitational acceleration g , and let’s say you don’t know how to integrate the differential
equation, but you would still like to know how far it fell in (say) 10 seconds. You are armed only with a
pocket calculator, and so this is what you do: you draw a table like the one below, and start filling in
the data. (At the time t = 0, let’s say we start off with the ball at a height of 100 m, and we drop it from
rest.)

t 0 0.1 0.2 0.3 . . .
x 100 . . .
v 0 . . .
a -10 . . .

Table 1: The initial table, with only the first column filled in.

Now, let’s say we want to populate the remaining columns, how would we go about doing this? Well,
what is the change in position in the interval of time dt chosen? Using our analysis above, we can see
that

x[t+dt] = x[t] + v[t] dt =⇒ x[0.1] = 100 + 0 x 0.1 = 100

v[t+dt] = v[t] + a[t] dt =⇒ v[0.1] = 0 - 10 x 0.1 = -1

Since the acceleration is constant, a[t+dt] = a[t], and so we can populate the rest of the table using
this technique, using only the values of velocity and acceleration from the previous time step.

t 0 0.1 0.2 0.3 . . .
x 100 100 99.9 99.7 . . .
v 0 -1 -2 -3 . . .
a -10 -10 -10 -10 . . .

Table 2: The same table, with other columns filled in. At each time step n dt, the values of position and
velocity are filled in, using the values of velocity and acceleration from the previous time step.

There are two important points to take away from this discussion: firstly, you can populate the entire table
using only the results from the previous timestep; you don’t have to know the entire history of the particle.
And secondly, you still need the initial position and velocity of the particle. It should be easy for you to
convince yourself that if you didn’t start from rest, but rather threw the ball up with some initial velocity
u, the second row of the table above would look very different. As a result, the initial position and velocity
– known as the initial conditions – are essential for solving such differential equations. The fact that there
are two such initial conditions is related to the fact that the differential equation in question is second
order. We will deal with this in more detail in the class, but for now this should make sense in practical
terms.

Of course, you might argue that this is not strictly true. Why have we forgotten about the acceleration?
In this case, it was constant, but in general it could change, and without the acceleration at every time
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step, we wouldn’t be able to define how the velocity changes! But then, you might ask, what of the rate
of change of acceleration (called the “jerk”)? What if this acceleration itself was changing as a function of
time? You’d also need to know the initial “jerk”, and so on and so forth. It would seem like you needed to
know and infinite number of “initial” conditions – one for every derivative of the position – and it might
seem an impossible task! You would be completely right. However, this is where Nature steps in to make
our lives easier. It turns out that in all1 the problems in Classical Mechanics you will be dealing with in
an undergraduate physics degree, Newton’s Law holds, meaning that the acceleration of an object is given
by an external agent known as the force, F , and they are related by the mass (m) of the object through the
equation:

a = F

m
.

This defines the dynamics of the system, which we will speak of next.

1.2 Dynamics

Newton’s Law basically states that an external agent that applies a force on an object instantaneously
changes its acceleration, i.e.

a(t ) = F (t )

m
.

This means that we don’t need to look for the higher derivatives of the acceleration, provided we know
exactly how the force changes at any instant of time. The example above was clearly for a constant force
(since the acceleration was constant). A natural question now is what woud happen if the force was dif-
ferent. Indeed, it is exactly this that distinguishes (say) a ball falling under gravity from a mass oscillating
on a spring. This is what we call defining the dynamics of the problem.

Let’s consider a mass and spring system. In this case, it’s well known that the force is provided by Hooke’s
Law: F = −kx, where k is the spring constant, and x is the extension of the spring from its equilibrium
position. This is true at any instant of time, so perhaps it’s better to say that

F (t ) =−kx(t ),

since (in general) x(t ) could be a varying function, and therefore the force varies too. Using Newton’s Law,
this just means that the acceleration of the mass on the spring is

a(t ) =− k

m
x(t ) =−ω2

0x(t ).

So here we have something interesting: in the previous section we showed how, given the acceleration on
an object one could find the change in velocity in some time dt, and given the velocity of an object one
could find its change in position. However, in this particular problem, we see something else: as the posi-
tion of the object changes, so does the force (and consequently the acceleration)! In other words:

Position: x[0] +v[0] dt−−−−−−−→ x[0.1] +v[0.1] dt−−−−−−−−−→ x[0.2] . . .

Velocity: v[0] +a[0] dt−−−−−−−→ v[0.1] +a[0.1] dt−−−−−−−−−→ v[0.2] . . .

––––––––––––––––

Acceleration: −ω2
0 x[0] −−−−−−−→ −ω2

0 x[0.1] −−−−−−−−−→ −ω2
0 x[0.2] . . .

1Well, nearly all.
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So the technique for solving such a problem would be the following:

(a) Start by defining an initial position and initial velocity (the initial conditions of the problem)

(b) Change the position of the particle, using these initial conditions.

(c) As soon as the position changes, so does the acceleration. Use this fact to update the acceleration
with the new position.

(d) Use the updated acceleration to change the velocity of the object.

(e) Repeat the above process with the new position and velocity, until the total time has elapsed.

The above schematic is called the Euler(-Cromer) method. It’s the simplest method by far of solving differ-
ential equations. In the class, we have also discussed the Leapfrog method, which is a lot more efficient,
and a simple extension of this method. Make sure you spend some time trying to understand that. In the
next section we will develop an algorithm to use the Euler method in a Python program.

Note that in the above example we have assumed that the force is merely a function of position.
In certain (important!) situations, you will see that the force (and therefore the acceleration) can
also be a function of velocity. However, this is a trivial extension of what we’ve seen above: the
acceleration will be a function of both x and v. I’ll leave it to you as an exercise to understand how
this will work.

2 Numerically solving a differential equation

In what follows I will assume that you have read through the resources for programming so that
you already have a basic understanding of what functions, NumPy arrays, and loops are, and what
the syntax is to define them in Python.

The first step in solving any system is to define the dynamics, which we will do by defining an “accelera-
tion” function in Python, which accepts some input variables, and outputs a number. For the harmonic
oscillator example given above (with frequency ω0 = 1), we do this as follows:

1 def a(pos):
2 return -pos

This simple function accepts a variable (that we have called pos), and returns a number (-1 x pos. (I’ll
leave it to you to figure out how this would change if ω0 6= 1.) Thus, if we “call” the function anywhere in
the program with (say) the number “1” as an argument, we’d get a number “-1” as the output. To see if
you understand it, run the following lines after defining the function above and try to explain why you get
the output you do:

1 print( a(3) )
2 print( a(1)*a(-1) )
3 print( a(17) - a(-17) )
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1 Output: -3
2 -1
3 -34

Now that we have defined the external agent that drives our system, we can solve the kinematics. What
we ultimately want to have is the data that would populate Table (2). In order to do this, we will define
two arrays, one which will contain the information about the position, and one which contains the infor-
mation about the velocity (we don’t need one for the acceleration, since in physical systems it is always
expressible as some combination of the above two quantities, as we showed earlier). We’ll also make an
array which contains the time elapsed, since that will make it easier for plotting later. Let’s define these
arrays to be NumPy arrays, since they are easier to work with for scientific purposes. You should thus im-
port the NumPy package using the command below. (We’ll also import the "pyplot" collection from the
Matplotlib library, since this will help us plot things at the end.)

1 import numpy as np # Import the NumPy package as "np"
2 import matplotlib.pyplot as plt # Import the Matplotlib library

But how long should these arrays be? Well, that depends on two quantities, the total time T, and the time-
step dt. Clearly, we are looking to discretise our system so that after some “N” steps we cover the time T .
i.e., we require N to be the nearest integer that satisfies T = N x dt.

The arrays t, x and v will thus have this length, and we will initialise them to be filled with zeros, using the
np.zeros(length, data_type) function from the NumPy library.

1 dt = 0.1 # Time step
2 T = 10 # Total time over which simulation runs
3

4 N = int(T/dt) # The function "int" takes the integer value
5

6 t = np.zeros(N,float) # The following arrays have a length of N
7 x = np.zeros(N,float) # and whose elements are "floats" (decimals)
8 v = np.zeros(N,float) # They are all initially zero.

We can now initialise the arrays quite simply:

1 t[0] = 0 # This is not necessary as t[0] is already zero
2 x[0] = 10 # Initially , the object is 10 units from the origin
3 v[0] = 0 # It starts from rest

Now that we’ve set up everything, we can use the definitions of position and velocity to populate the
table:

1 for i in range(1, N): # The loop doesn 't touch i = 0
2 t[i] = t[i-1] + dt # Updating the time array
3 x[i] = x[i-1] + v[i-1]*dt # Updating the position array
4 v[i] = v[i-1] + a(x[i])*dt # Updating the velocity array
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And voila, we’re done! We run the loop over N steps, after which all the arrays are populated. At each step
in the loop, the arrays are incremented by the appropriate terms, depending only on the values in the
previous cell.

Notice how we invoke the dynamics (the function a) only when we increment the velocity: the function
takes the current position, and “spits out” the current acceleration. We can now plot these arrays against
t using the plt.plot(x_axis_array, y_axis_array) function:

1 plt.plot(t, x, label="Position", color='tab:blue')
2 plt.plot(t, v, label="Velocity", color = 'tab:orange ')
3 plt.plot(t,-x, label="Acceleration",color='tab:red')
4 plt.xlabel("Time")
5 plt.legend ()
6 plt.show()

Running the entire code should now produce the graph shown in Figure (1). Notice how we now have the
position, velocity, and acceleration arrays as a function of time. In the last case, all we needed to know
was that at every instant a(t ) =−x(t ). (Why? How would this change if ω0 6= 1?)

Figure 1: Position, velocity, and acceleration graphs for simple harmonic motion: notice how the acceler-
ation graph is just (in this case) the negative of the position graph.

The entire code is given below:

1 import numpy as np # Import the NumPy package as "np"
2 import matplotlib.pyplot as plt # Import the Matplotlib library
3

4 def a(pos):
5 return -pos
6

7 dt = 0.1 # Time step
8 T = 10 # Total time over which simulation runs
9

10 N = int(T/dt) # The function "int" takes the integer value
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11

12 t = np.zeros(N,float) # The following arrays have a length of N
13 x = np.zeros(N,float) # and whose elements are "floats" (decimals)
14 v = np.zeros(N,float) # They are all initially zero.
15

16 t[0] = 0 # This is not necessary as t[0] is already zero
17 x[0] = 10 # Initially , the object is 10 units from the origin
18 v[0] = 0 # It starts from rest
19

20 for i in range(1, N): # The loop doesn 't touch i = 0
21 t[i] = t[i-1] + dt # Updating the time array
22 x[i] = x[i-1] + v[i-1]*dt # Updating the position array
23 v[i] = v[i-1] + a(x[i])*dt # Updating the velocity array
24

25 plt.plot(t, x, label="Position", color='tab:blue')
26 plt.plot(t, v, label="Velocity", color = 'tab:orange ')
27 plt.plot(t,-x, label="Acceleration",color='tab:red')
28 plt.legend ()
29 plt.show()

Let’s note some important points:

(a) W have solved the problem for an object attached to a string that has initially been extended by 10
units. Note that if we wanted to solve the motion for the case when we don’t stretch the spring out,
but instead give the object a “kick” at t = 0, all we’d have to do is change the initial conditions to
read x[0] = 0, and v[0] = 1 (if we assume it’s kicked with a velocity of + 1 units).

(b) More interestingly, what if we wanted to solve the problem of a freely falling ball as we did first when
we made Table (2)? What would need to change? A little bit of reflection should lead you to conclude
this amazing result: all you need to do is change line 5! If you replace return -pos with return
-10, you’re solving a different problem! This comes back to what we were discussing earlier: the
dynamics defines what makes this system different from any other system. The kinematics is always
true, as they arise from the very definitions of quantities like position, velocity, and acceleration.

(c) Another useful method discussed both in class and in the Feynman Lectures on Physics, Vol. I, Sec.
9.6 (though the name is never used) is the “Leapfrog” method. You can transform the simple method
described above into the much more efficient leapfrog method by simply updating the velocity by
an extra half-step at the beginning. In other words, you just need to change line 18 from

1 v[0] = 0 # It starts from rest

to

1 v[0] = 0 + a(x[0])*dt/2 # It starts from rest

and, remarkably, you’re done!

Optional Exercise: After going through the one-body problem discussed in class, try to solve the
3-body problem in the provided Jupyter Notebook. The notebook is written in Visual Python, but
much of it is incomplete; you need to fill in the appropriate commands.
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