DS 4: An Introduction to Vector Spaces

Philip Cherian February 6, 2020

1 Axioms of Vector Spaces

- (a) Suppose V is a vector space. (i) Show that V cannot have more than one additive identity. (ii) Show that every element v in V has only one additive inverse.
- (b) In each of the cases below, a set *V* is provided, equipped with specific operations. In each case, determine whether *V* is a vector space. If it isn't, state the axioms that *V* violates. In each case, identify the **additive identity**.
 - (i) $V = \{ \text{Solutions to the simple harmonic oscillator} \}$, equipped with the usual definition of addition of functions and their multiplication by scalars.
 - (ii) $V = \{n \times n \text{ matrices with positive entries } \}$, equipped with standard matrix operations.
 - (iii) $V = \{n \times n \text{ real symmetric matrices }\}$, equipped with standard matrix operations.
 - (iv) $V = \{n \times n \text{ diagonal matrices }\}$, equipped with standard matrix operations.
 - (v) $V = \{$ Functions defined for all x, with $f(0) = 0 \}$, equipped with the standard operations for addition of functions and their multiplication by scalars.
 - (vi) $V = \{$ Functions defined for all x, with $f(0) = 1 \}$, equipped with the standard operations for addition of functions and their multiplication by scalars.
- (c) Show that the set \mathbb{R}^+ of positive real numbers is a vector space when the action of "addition" $x \oplus y$ is interpreted to mean the product of x and y (so that $2 \oplus 3 = 6$), and "muliplication" by a scalar is defined by $r \otimes x = x^r$.
- (d) If in the question above, we were dealing with \mathbb{R}^- (negative real numbers) would it still be a vector space? If yes, show that all the axioms are satisfied. If no, explain why not.
- (e) Consider the set of all Fibonacci sequences. A Fibonacci sequence is one in which each number is the sum of the two preceding numbers. Note: each element of this set is a sequence. The first two elements of the Fibonacci sequence can be chosen arbitrarily, and give rise to different sequences. For example, below are some sequences parametrised by their first two elements:

$$f_{01} = \left\{0, 1, 1, 2, 3, 5, \dots\right\}$$

$$f_{22} = \left\{2, 2, 4, 6, 10, 16, \dots\right\}$$

$$\vdots$$