DS 6: Linear Transformations

Philip Cherian

February 20, 2020

1 Linear Transformations

- (a) Show that the two conditions for a transformation *L* to be linear
 - (i) L(u+v) = L(u) + L(v), for two vectors u and v,
 - (ii) L(cv) = cL(v), for a vector v and a scalar c.

is equivalent to the single condition L(ru + sv) = rL(u) + sL(v), where r and s are scalars.

Hint: You need to do this in two parts. First show $(i, ii) \implies (iii)$, and that $(iii) \implies (i,ii)$.

(b) Consider the vector space $P_n(x)$ of polynomials of order up to n. Suppose L is a linear transformation from P_2 to P_3 such that

$$L(1) = 4$$
, $L(x) = x^3$, $L(x^2) = x - 1$.

Find:

- (i) $L(1+t+2t^2)$
- (ii) All values a, b, c, such $L(a + bt + ct^2) = 1 + 3t + 2t^3$.
- (c) Solve Exercise (1.4) from the textbook *A Course in Mathematics for Stuents of Physics: Volume 1* by Paul Bamberg and Shlomo Sternberg, (Pg. 47).

2 Kernel and Image

(a) Find the kernel and image for the following transformations, and draw them out. In each case, show that

$$\dim(\ker(F) + \dim(\operatorname{Im}(F) = \dim(V).$$

(i) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$, such that

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x + 2y \\ -6x - 4y \end{pmatrix}.$$

(ii) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$, such that

$$F\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + y + 8z \\ y + 2z \\ x + y + 5z \end{pmatrix}.$$

- (b) For each of the cases above, find the matrix that represents the transformation F.
- (c) Prove that the kernel of a linear transformation is a vector (sub)space.