DS 7: Linear Maps as Matrices

Philip Cherian February 27, 2020

1 The Inverse

- (a) Let A be an $n \times n$ matrix of real numbers. Which of the following statements are equivalent to: "the matrix A is invertible"? Explain *briefly*.
 - (i) The columns of *A* are linearly independent.
 - (ii) The columns of A span \mathbb{R}^n .
 - (iii) The rows of A are linearly independent.
 - (iv) The kernel of A is 0.
 - (v) The only solution of the homogeneous equations Ax = 0 is x = 0.
 - (vi) The linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^n$ defined by A is one-to-one.
 - (vii) The linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^n$ defined by A is onto.
 - (viii) $det(A) \neq 0$.

2 Singular Matrices

- (a) Consider a transformation which maps a three-dimensional vector to its projection on the *x* axis.
 - (i) Show that this transformation is linear.
 - (ii) Determine the matrix for this transformation, P_x .
 - (iii) Show that $P_x \cdot P_x = P_x$.
 - (iv) Find the image of this transformation. What is its dimension?
 - (v) Find the kernel of this transformation. What is its dimension?
- (b) Now consider a transformation which maps a three-dimensional vector to its projection on the x y plane, and repeat the above process.

3 Linear Transformations as Matrices

Consider the set of all solutions to the differential equation

$$y''(x) + y(x) = 0$$

.

- (a) Show that this set is a vector space under the usual operations of addition and multiplication by real numbers.
- (b) Find the dimension n of this vector space.
- (c) Choose a basis $\{\hat{u}_1, \hat{u}_2, \dots \hat{u}_n\}$ for this set, and show that there is a map (L) between this space and \mathbb{R}^n , such that

$$L(\hat{u}_1) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$L(\hat{u}_2) = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$\vdots \quad \text{oto}$$

- (d) Let's now choose some "abstract" operation *S*, shifting our variable *x* by $\pi/2$. i.e. $x \to x + \pi/2$.
 - (i) How does *S* act on the basis vectors $\hat{u}_1, \hat{u}_2, ...$?
 - (ii) In this new basis, we now have a new map M. Find the matrix representing the transformations S in \mathbb{R}^n for the map M.
 - (iii) Find the matrix B which allows us to go from L to M,

$$M = BL$$
.

(iv) Show that

$$\operatorname{Mat}_{M}(S) = B \operatorname{Mat}_{L}(S) B^{-1}.$$