DS 9:

Orthogonal Matrices and Markov Processes using SymPy

Philip Cherian

March 26, 2020

1 Eigenvalues and Eigenvectors

(a) Find the eigenvalues and eigenvectors of

$$\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

- (b) Show that A^T and A have the same eigenvalues. What about their eigenvectors?
- (c) If A is idempotent ($A^2 = A$), show that its eigenvalues are 0 or 1. If A is nilpotent ($A^k = 0$), show that all eigenvalues are 0.

2 Orthogonal Matrices

A matrix O is said to be **orthogonal** if $O^TO = 1$.

- (a) Suppose *A* is orthogonal. Find the determinant of *A*.
- (b) Find a general representation of orthogonal matrices. Use this to find its eigenvalues and eigenvectors. Show that the eigenvalues λ_i satisfy the condition $|\lambda_i| = 1$.
- (c) If *A* and *B* are orthogonal matrices, is their produce *AB* orthogonal?

3 Epidemics: the SIS model

Let's consider a simple model of diseases where the population N is fixed and divided into two groups, the susceptible (S) and the infected (I). The susceptible become infected at a constant rate r_1 , meaning that at the end of each day, there is a probability of r_1 that an uninfected person can become infected. Similarly, people who are infected may overcome the disease and become susceptible to infection again at a rate r_2 . Let's imagine that we initially begin with 1 infected person and N-1 susceptibles.

- (a) How would you represent the state of the system ψ_n ?
- (b) Find the transition matrix M. i.e. find the matrix M such that $\psi_{n+1} = M \cdot \psi_n$.
- (c) Calculate M^n , and use this to find ψ_{∞} .
- (d) Write a code to compute ψ_n at different values of n, and plot the number of susceptible and infected individuals in the population as a function of time.