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1 Planetary Orbits and Simple Harmonic Motion

This problem will help you understand the orbit of a planet around the Sun, without having to know
much mechanics to do it. You will learn next year in your course on Classical Mechanics that the effective
potential energy of a planet in orbit around the Sun is given by the following expression when the planet
is much lighter than the Sun:
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where L is the angular momentum, a conserved quantity, M and m are the masses of the Sun and planet
respectively, and r is the radial distance of the planet from the Sun, which varies as the planet goes around,
since the orbit is elliptical.

(a) What are the symmetries of the gravitational field of the Sun? What coordinate system is being used
here? Why?

(b) Show that Ve has a minimum, and find the point r = ry, where it occurs. Do a dimensional check on
the expression you get for ry. Does the fact that Vg has a minimum suggest stability or instability?
Stability with respect to what?

(c) Plot V¢ for reasonable values of the constants and convince yourself that has one one minimum.

(d) Define a dimensionless effective potential energy by dividing Ve by GMm/ g, and a dimensionless
radius by dividing r by rp. Plot the dimensionless potential energy against the dimensionless radius.

(e) Do a Taylor Series expansion up to second order of this expression about the minimum. The radial
motion predicted by your analysis should be oscillatory. Find the time period of the radial oscil-
lation and compare it with the time period of a planet in a circular orbit at radius ry. Try to make
sense of all of this put together.

2 The Stirling Approximation

Factorials appear very often in physics (especially in Statistical Mechanics) but they can be quite difficult
to work with since they very quickly become unmanageably large. One interesting result was discovered
by Euler who noticed that for integers n,
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The above integral is not only defined for integers. In general, one could replace n by some continuous
variable z, and the resulting integral is called the Gamma Function, denoted by the Greek symbol I'. You
will learn more about this function in later courses on Mathematical Physics:
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In this problem, we will deal with approximating the factorial using through the Gamma Function, and
we will do it using both Gaussian Integration and the Taylor Series we discussed earlier.

(a) Start off by looking at the function that’s being integrated. Show, by plotting or sketching the func-
tions u” and e~ what their product looks like, and explain why you'd expect it to have a maximum.

(b) We will approximate the integral of the function you've just plotted as follows: first, we approximate
the function as a Gaussian with some mean and standard deviation, and then we’ll then use the
formula for Gaussian integration to compute the integral. Start by writing the integral as:
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The function in the integral decays exponentially fast, so the terms in the integral that will con-
tribute the most will be when the function u — nlogu is minimum. Show that the function f(u) =
u— nlogu has a minimum when u = n.

(c) Do a Taylor Series expansion of the function f(u) = u — nlogu about this minimum to get:
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(d) Use this to show that you can approximate
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(e) Now, the integral above nearly looks like a Gaussian integral, except for the limits. However, it turns
out that if we change the integral’s lower limit from 0 to —oo, the error introduced is tiny.
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Optional Exercise: Integrate the following expressions numerically to find the functions below and

plot them on the same graph for some range of (integers) n:
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Next, plot the relative error associated with the functions I, (n) and I5(n), i.e.
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Beyond which value of n does their difference become less than 1%?

(f) Show that we can now approximate
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1n physics, it is often sufficient to ignore the v/277 term, so that the Stirling Approximation is often simply written as: n! = n’?e™".
Here is a much quicker proof of that identity, where all we do is replace a sum by an integral:
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However, the method described in the exercise is better, as it provides a systematic way to find higher order correction terms.
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