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LIMIT CYCLES

Consider the following system of equations:

ẋ =ω1 y +x
(
µ−x2 − y2)

ẏ =−ω2x + y
(
µ−x2 − y2)

where ω1, ω2, and µ are parameters that can be positive or negative.

LOCAL STABILITY ANALYSIS

1. Find the fixed points (x∗, y∗) of this system.

2. Linearise these equations and write the Jacobian J (x, y).

3. Perform a local stability analysis about the points (x∗, y∗).

GLOBAL STABILITY ANALYSIS FOR ω2 =ω=ω1

1. A global analysis is usually very difficult explicitly. However, ω2 = ω1 = ω, is a rare ex-
ception. Write out the above equations in terms of ω, and show that there exists a co-
ordinate transformation such that the coupled equations are decoupled. i.e. show that
there exists some u(x, y), v(x, y) such that u̇ = f (u) and v̇ = g (v). As a result, solve these
equations analytically.

2. Show that the number of fixed points depends on µ, and classify them in every case.

3. Show that for some choice of µ, almost all trajectories spiral into a circle of radius
p
µ,

which is therefore a limit cycle.

4. Plot graphs in which you can vary µ and see the resulting trajectories in the x− y plane.

EXPLORATION

1. Choose ω1 and ω2 to be distinct. Set ω1 to some value (say 0.5). Then,

a) Fix µ to a non-zero value and describe how the phase portrait changes as you vary
ω2.

b) Keep ω1 and ω2 fixed at some interesting value and vary µ and see how the be-
haviour of the system changes.

2. Classify all the fixed points that you see in the system, mention the nature of the fixed
points and compute the index to confirm your result.

3. Find out for what range of values (ω1, ω2, and µ) you will get:

a) Limit cycles.

b) Saddle points.

by varying parameters in your plot



SELF-ORGANISATION AND EVOLUTION

Consider the following model: a group of n ≥ 2 molecules that are capable of replicating on
their own, but can also catalyse each other’s replication. Thus, each element in the ecosystem
favours the formation of others. A simple model of such a system could be the following
dimensionless equation:

ẏi = yi

(
yi−1 −

n∑
j=1

y j y j−1

)
, i = 1,2,3, . . . ,n

The variables yi represents the concentrations of the molecule i , and therefore yi > 0 for all
i . Furthermore, y0 = yn .

CASE OF n = 2

1. Write out the above equations for n = 2, and find and classify all fixed points given
yi > 0.

2. Let us define two new variables z1 = y1 + y2, and z2 = y1 − y2. Show that z1(t ) → 1 and
z2(t ) → 0 as t →∞.

3. Use this to conclude that, as t →∞, (y1(t ), y2(t )) → (1
2 , 1

2

)
.

4. Plot the phase portrait on the computer, and explain anything interesting that you see.

5. Compute the index for all the fixed points in the system.

CASE OF n = 3

1. Now study the more complicated case of three such interacting elements. Find out as
much as you can.



CLOSE ENCOUNTERS OF THE PERIODIC KIND

Suppose we are being harvested by alien beings from another planet. A simple model of
this would be to imagine that our population in Delhi would grow logistically, and that alien
influence would lead to some form of harvesting.

CONSTANT HARVESTING

1. Write out the Logistic Equation, and then include a term with constant harvesting H .
Write it in a dimensionless form, in terms of some x,τ, and h that are suitably defined.

2. Show using a plot how the vector field looks for different values of the parameter h.

3. Show that there exists a ‘critical’ h = hc, where the solutions change their form. Show
this both from your graph as well as analytically.

PERIODIC HARVESTING

1. We now move on to another case, where the harvesting varies periodically in time.1 It
might seem likely that – since the harvesting is periodic – the population should also
vary periodically over time. Begin with a simple example of purely sinusoidal harvest-
ing. Repeat your analysis for the earlier part, using the equation:

ẋ = r x(1−x)−h(1+a sin t ),

assuming r,h > 0, and 0 < a < 1. Plot the solutions to this equation, and vary the pa-
rameters.

2. Show from your plot that – in spite of the humans being harvested periodically (with
a period of 2π) – if h > r /4 there are solutions in which our population does not vary
periodically. What happens to the population at large times in this case?

3. Show that if
h < r

4(1+a)
,

there exist periodic solutions of period 2π. Further show that for some values of x, you
get a stable limit cycle, while for others you get an unstable limit cycle. Identify these
values.

Try to interpret your results.

4. What happens for
r

4(1+a)
< h < r

4
?

5. Bonus: Redo the analysis with harvesting frequency as a parameter [i.e. sin(ωt ) instead
of sin(t )].2

1Perhaps the aliens are not too fond of Delhi summers, and so decide to go bother someone else until a more
convenable time of the year.

2Too much pollution during the winters - they don’t want to be around then either



FORCED OSCILLATORS

Consider the following forced non-linear oscillator:

ẍ +γẋ +ω2
0x +bx3 = F0 sinωt

THE UNFORCED, UNDAMPED OSCILLATOR

1. Take γ= 0 = F0. In this case, solve the above equation exactly in terms of Elliptic Func-
tions, and plot the solution for x(0) = 1 and ẋ(0) = 0.

THE FULL DAMPED DRIVEN OSCILLATOR

1. Now consider the full damped driven non-linear oscillator. Use Mathematica to plot
the phase portrait and x as a function of t for a range of parameters F0,γ (Take ω0 = 1
and ω = 2 ). Can you find two distinct steady states with quite different amplitudes as
you tune parameters? What can you say about their frequencies?

2. Calculate the index for any fixed points that you find.

3. Bonus: Take a Fourier Transform of your data and see what – if anything – you can
determine about these states.

4. Compare the above case with another driven damped oscillator, this time with quadratic
damping:

ẍ +ηẋ|ẋ|+x = F0 cos2t

Use Mathematica to plot the phase portrait and x as a function of t for a range of pa-
rameters F0,η. Do you get limit cycles here? If so, how many distinct steady state be-
haviours can you get by tuning the parameters – compare and contrast with the previ-
ous case.


