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The Multipole Expansion



Question 1

We have seen that:

Vdipole =
p cos θ

r2
=

p.̂r

r2
(1)

We also know that E = −∇V , and so:

Edipole = −
(
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂

)
=

2p cos θ

r3
r̂ +

p sin θ

r3
θ̂

(2)

Now use the fact that p = (p · r̂)r̂ + (p · θ̂)θ̂ = p cos θr̂ − p sin θθ̂ and the

answer should follow. (See Griffiths’ Electric Field of a Dipole – pg 153 in

my edition, and Problem 3.33).
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Charge Distributions



Question 1

We will be using the differential form of Gauss’s law: ∇ · E = ρ/ε0.

Thus, the charge distribution is given by

ρ = ε0∇ · E (3)

Computing the divergence in spherical polar coordinates:

ρ(r , θ, φ) = ε0

(
1

r2
∂

∂r

(
r2
A

r

)
+

1

r sin θ

∂

∂θ
(0) +

1

r sin θ

∂

∂φ

(
B sin θ cosφ

r

))
= ε0

(
A− B sinφ

r2

)
(4)
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Question 2

Discussion: is the charge distribution uniquely defined by the Electric

field, or is something else required?

What have we taken for granted? BOUNDARY CONDITIONS!

The electric field is usually assumed to go to zero far away from the

charges. Or, if this isn’t given to us, we sometimes use symmetry to guess

the form of the field (for example, in the case of infinite sheets, etc.).

However, in this case, the distribution is infinite with no symmetries we

can exploit. In fact, it is a badly posed problem: there can be no answer.

(Try calculating the field using Gauss’s law, and you’ll get an integral

that diverges.)
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Equipotential Surfaces



Question 1

You should already know the answer for the potential for such a ‘2D

dipole’ configuration:

V = − λ

2πε0
ln
( r+
a

)
− −λ

2πε0
ln
( r−
a

)
=

λ

2πε0
ln

(
r−
r+

)
(5)

Thus, we have that:

V (x , y , z) =
λ

4πε0
ln

(
(y + a)2 + x2

(y − a)2 + x2

)
(6)
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Question 2

Let us set the potential to be constant (V0). Then, taking the

exponential on both sides in the previous equation,

(
(y + a)2 + x2

(y − a)2 + x2

)
= e

4πε0V0
λ = C (7)

You can then open the squares and simplify the equations to get

x2 + y2 + a2 − 2ay

(
C + 1

C − 1

)
= 0

x2 + (y − y0)2 = R2 =⇒ x2 + y2 + y2
0 − R2 − 2yy0 = 0

(8)

Comparing, we see that these are circles centered at y0, with radius R.
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Question 2 (contd.)

y0 = a

(
C + 1

C − 1

)
R = 2a

√
C

|C − 1|

(9)

Exercise: Show that in terms of V0 this is

y0 = a coth

(
2πε0V0

λ

)
R = a csch

(
2πε0V0

λ

) (10)

Discussion: When is this a ‘problem’?

1. When λ→∞ Well... not really a problem.

2. When V0 → 0 Both the centre and radius of the circle go to ∞! But

wait, that’s just the x−axis, our reference! =⇒ No problem.
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The Method of Images



Questions 1,2, and 3

1. The charge on the conductor will rearrange itself so that any changes

occurring inside the shell will not affect the potential outside it.

2. Grounded =⇒ the potential on the shell is the same as at infinity:

zero.

3. If the potential is zero on the surface, then

1

4πε0

(
q

r2
+

q′

r1

)
= 0 =⇒ q′

r1
= − q

r2
(11)
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Questions 4,5

1. Notice that there are two triangles ((R, r1, p) and (R, r2, a)) with

one angle being the same: θ.

2. In terms of the law of cosines, we can write

r21 = R2 + p2 − 2Rp cos θ

r22 = R2 + a2 − 2Ra cos θ
(12)

from which the equation follows.

3. What is the induced charge on the shell?

3.1 Proportional to q.

3.2 a → ∞ =⇒ induced charge must go to zero! (for fixed R)

3.3 R → 0 =⇒ induced charge must go to zero! (for fixed a)

4. The induced charge on the must be the same as the image charge.

5. But the induced charge on the shell is negative if q is positive.

Thus, so is the image charge.
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Question 5

q′2R2 + q′2a2 − 2q′2Ra cos θ = q2R2 + q2p2 − 2q2Rp cos θ

(13)

Thus, we get two equations:

q2 = q′2
a

p
=⇒ q′ = −q

√
p

a

p

a

(
R2 + a2

)
=
(
R2 + p2

)
=⇒ p =

R2 + a2

2a
± 1

2

√
(R2 + a2)2

a2
− 4

R2a2

a2
(14)

Solution:

q′ = −qR
a

p =
R2

a
or p = a

(15)
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Question 6

1. Consider an arbitrary point outside the shell p(r , θ, φ). To find the

potential at p, we use the same technique as before, except we

replace R → r .
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Question 6, 7

V (p) =
1

4πε0

(
q

r2
+

q′

r1

)
=

(
q√

r2 + a2 − 2ra cos θ
+

−q R
a√

r2 + p2 − 2rp cos θ

)

=
q

4πε0

 1√
r2 + a2 − 2ra cos θ

− 1√(
ra
R

)2
+ R2 − 2ra cos θ


(16)

1. What if we had a shell at some V0?

Imagine a second image charge

q′′ at the center of the shell. Its sole purpose would be to increase

the shell’s potential to some V0 = q′′/4πε0R.

2. Thus, same problem, except with two image charges:

q′ = −qR
a

q′′ = 4πε0RV0

Vungrounded(p) = Vgrounded(p) +
q′′

4πε0r

(17)
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Question 8

1. The surface charge density can be obtained from the boundary

conditions on E:

Eoutside − Einside = Eoutside = −∇V |surface = σ/ε0n̂ (18)

2. Rearranging the previous equation, we get

σ0(r , θ, φ) = −ε0
∂V

∂r

∣∣∣∣
r=R

σ0(θ) =
−q

4πR

a2 − R2

(R2 + a2 − 2Ra cos θ)3/2

(19)

3. For an ‘ungrounded’ shell, it will be

σ(θ) = σ0(θ) +
q′′

4πR2
(20)

4. What if the shell were neutral?

=⇒ q′′ = −q′

13
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∣∣∣∣
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