
PHY2410 – Oscillations, Waves, and Optics Spring 2022

Assignment 8:
Electromagnetic Waves at an Interface

Due: April 8, 2022 (Friday) Marks: 15

1 Transmission and reflection at an interface

We set up the problem just as we did in the Discussion Session – as shown in Figure (1) – with the interface
between the two regions being along the x y−plane. In the Discussion Session we saw how the boundary
conditions for the electric and magnetic fields at the interface could be written as

( . . . ) e i (kI ·r−ωt ) + ( . . . ) e i (kR ·r−ωt ) = ( . . . ) e i (kT ·r−ωt ), at z = 0, (1)

where the quantities in parentheses would be filled in by the actual boundary conditions. We saw how ir-
respective of what these quantities were, the phases had to all be equal, from which we concluded:

• The xz−plane forms a plane of incidence, which contains all the wave-vectors k, as well as ẑ,

• The law of reflection: θI = θR ,

• The law of refraction: n1 sinθI = n2 sinθT .

Figure 1: Electromagnetic waves at an interface in the case of parallel polarisation. Since the polarisation
must always be perpendicular to k, and we have only one possible direction in which each E can point.

So far, we have not spoken about anything specific to electromagnetic waves. We will now look at the
quantities in the parentheses and show how they effect the electric and magnetic fields at either side of
the interface. From your course in Electromagnetism, you should know that at the interface between two
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media without free charges or currents, the electic and magnetic fields obey:

(A) ε1E⊥
1 = ε2E⊥

2 (B) E∥
1 = E∥

2

(C) B⊥
1 = B⊥

2 (D)
1

µ1
B∥

1 =
1

µ2
B∥

2

(2)

(a) The boundary conditions above can be a little confusing because they are often written in terms of
“parallel” and “perpendicular” components to the interface, rather than to the plane of incidence.
To avoid confusion, let us write them out in terms of their x, y, and z components. Begin by showing
that the above boundary conditions can be written as: [2]

ε1 (E0I +E0R )z = ε2 (E0T )z

(B0I +B0R )z = (B0T )z

(E0I +E0R )x,y = (E0T )x,y

1

µ1
(B0I +B0R )x,y =

1

µ2
(B0T )x,y

(3)

(b) We know that electromagnetic waves have a polarisation: i.e., a direction along which their electric
and magnetic fields oscillate. This direction can be anything except along the direction of propaga-
tion k. We will consider two cases separately. First, let us consider an electromagnetic wave that is
oscillating in the plane of incidence, i.e. in the xz−plane. This is the case where the polarisation is
parallel to the plane of incidence. Draw a figure like Figure (1) and compare the components of EI ,
ER , and ET (as well as all the Bs) to show that [2]

ε1 (−E0I sinθI +E0R sinθR ) =−ε2E0T sinθT ,

(E0I cosθI +E0R cosθR ) = E0T cosθT ,
(4)

(c) Using the laws of reflection and refraction, show that

E0I −E0R =
(
µ1n2

µ2n1

)
︸ ︷︷ ︸

β

E0T ,

E0I +E0R =
(

cosθT

cosθI

)
︸ ︷︷ ︸

α

E0T ,

(5)

and derive the Fresnel Equations for polarisation parallel to the plane of incidence: [2]

E0R =
(
α−β
α+β

)
E0I , E0T =

(
2

α+β
)

E0I (6)

(d) Now let us consider polarisation perpendicular to the plane of incidence. In this case, E would point
along the ŷ direction. Write out the boundary conditions (as before) and show that

E0I +E0R = E0T ,

E0I −E0R = (
αβ

)
E0T .

(7)

Find the Fresnel equations when the wave is polarised perpendicular to the plane of incidence. [4]
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2 Total Internal Reflection

We will now consider the case where n1 > n2: our incident wave is moving from an optically dense to an
optically rare medium. We have seen in class that Snell’s Law indicates that there exists a critical angle θc

such that when θI = θc , θT =π/2. When θI > θc , there appears to be no transmitted wave at all.

(a) Remember that the k vector for the transmitted wave can be written as (why?):

kT = |kT | (sinθT x̂+cosθT ẑ) . (8)

Now, use the fact that if θI > θc , then sinθT > 1 and cosθT is imaginary. Use this to show that

ET = E0T e−κz e i (kx−ωt ), (9)

where

κ≡ ω

c

√
(n1 sinθI )2 −n2

2 and k ≡ ωn1

c
sinθI . (10)

Describe this wave in detail. [2]

(b) Using the results from the previous problem, calculate the reflection coefficient for polarisation (i)
parallel and (ii) perpendicular to the plane of incidence. [1]

(c) All the fields that we used so far were complex numbers. Write out the real fields and construct
the Poynting vector S. Show that on average, no energy is transmitted in the z−direction. In which
direction is the energy transmitted? [2]
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