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1 Solving Differential Equations without Matrices

1.1 Why exponentials?

Exponentials have a special part to play in the solutions to the sort of differential equations you will see in
this course, and this is because they can (in many cases) transform a differential equation into an algebraic
equation that you know how to solve.

For example, consider the following differential equation that you are all (hopefully) familiar with:

d2x

dt 2 +ω2
0x = 0.

Suppose we look for a solution of the form Aeαt . The reason we do this is just glorified guesswork. Such a
solution – when plugged into the above equation – will give us:

(α2 +ω2
0)Aeαt = 0,

and since A and eαt are never zero, this means that α=±iω0.

Thus, we have two functions which solve the differential equation:

x1(t ) = Ae iω0t

x2(t ) = Ae−iω0t
(1)

Now, we know that the solutions to a nth order differential equation form a vector space of dimension n,
and to describe any vector space of dimension n we need at most 2 linearly independent vectors.

Exercise: Show that x1(t ) and x2(t ) are linearly independent.

Thus, the general solution can be written as

x(t ) = Ae iω0t +Be−iω0t ,

where A and B will be fixed by the initial conditions.
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1.2 Why complex numbers?

Some of you might be surprised at why we introduce complex numbers to solve simple physical situations
which deal with “real” physical quantities. It’s a good idea to examine why we do this so that you know
why (and therefore, when) it is advisable to use this “trick”.

The first step is to realise that there are two complex notations that are equivalent. The first, with which
most of you must be familiar from school, is that a complex number z can be denoted by x + i y , where x
and y are both real. This is the “Cartesian” representation of complex numbers, but – just as with a normal
x y-plane, one could just as well represent these points in polar form. In other words, we could imagine z
being represented by some “distance” from the origin r , and some angle from the x-axis, θ. Clearly,

x = r cosθ r =
√

x2 + y2

y = r sinθ θ = arctan
( y

x

) (2)

Substituting these results into z, we can see that

z = x + i y = r cosθ+ r sinθ = r (cosθ+ i sinθ) = r e iθ (3)

Where in the last step we’ve used an important mathematical formula called Euler’s Formula. The stan-
dard way to prove this is using Taylor series (which we will see later in this course) but for now, a short
proof will be sketched out in the exercise below.

Exercise: Begin by defining f (θ) = cosθ+ i sinθ. We are going to show that f (θ) = e iθ for all
values of θ.

(a) Show that f ′(θ) = i f (θ) for all θ. (Hint: Use the fact that
1

i
=−i .)

(b) By solving the above differential equation, show that f (θ) = e iθ for all θ. (Remember, a first
order differential equation has one arbitrary constant, which can be set by f (0).)

It is this property of a complex number (that it can be written as a real number times a complex exponen-
tial) that makes it invaluable to solving linear (homogeneous1) differential equations.

Exercise: In particular, looking at the general solution in Equation (1.1), use the Euler formula to
show that

x(t ) =C1 cos(ω0t )+C2 sin(ω0t ).

and find C1 and C2 in terms of A and B .

Important Note: Complex exponentials behave quite differently from real exponentials. Suppose
ω is a real number. Then eωt is a continuously increasing (or decreasing, depending on the sign
of ω) function in time. However, e iωt = cos(ωt )+ i sin(ωt ) is an oscillatory function! Thus, the
appearance of complex exponentials highlights oscillatory behaviour!

1This word might be unfamiliar, and will become clearer next year in your MP course. Suffice it to say that it can be used to solve
differential equations of the form an x(n)(t )+an−1x(n−1)(t )+ . . . a1x′(t )+a0x(t ) = 0.
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2 Solving Differential Equations with Matrices

2.1 Two uncoupled masses

Let’s start off easy: consider the simple system given in Figure (1)

Figure 1: Two masses are allowed to oscillate, and neither is affected by the other.

The state of this system is completely specified by x1(t ) and x2(t ).

Exercise: Let’s convert this into a matrix problem:

(a) Begin by showing that x1(t ) and x2(t ) satisfy the following set of differential equations:

m1ẍ1 =−k1x1

m2ẍ2 =−k1x2

(b) Show that this can be converted into the following matrix equation:

(
m1 0
0 m2

)
︸ ︷︷ ︸

M

(
ẍ1

ẍ2

)
︸︷︷︸

Ẍ

=−
(
k1 0
0 k1

)
︸ ︷︷ ︸

−K

(
x1

x2

)
︸︷︷︸

X

(c) Show that the above equation can be written as shown below,

Ẍ =−(
M−1K

)
X =−ΛX =−

(
k1
m1

0

0 k1
m2

)(
x1

x2

)
=−

(
ω2

1 0
0 ω2

2

)(
x1

x2

)

Thus, in matrix form, the pair of equations seems to resemble a single (matrix) equation:2

d2

dt 2 X =−ΛX (4)

We can solve such an equation in exactly the same manner as we did for the “normal” differential equa-
tions, but with one added complication. Let us “guess” a solution3 of the form

X(t ) = Cαe iαt ,

2I’ll ignore the underbars from now on, capital letters will denote matrices like K and M , and bold-capitals will denote vectors,
like X.

3From time to time, we will call this an “ansatz”, which is just a fancy way of saying it’s a guess.
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where Cα is a constant column-vector that we need to find (which may be different for different αs), and
α is a real number.

Exercise: Substitute the above ansatz into Equation (4).

(a) Show that α=±ω1,±ω2.

(b) If this is the case, show that Equation (4) reduces to

ΛCα =α2Cα (5)

From the above exercise it must be clear that the Cα must be the eigenvectors of Λ corresponding to the
eigenvalues α2. We had earlier seen that there were four distinct values of α, but only two distinct values
of α2. We thus have to solve two eigenvalue equations:

ΛC±ω1 =ω2
1C±ω1

ΛC±ω2 =ω2
2C±ω2

Exercise: Solve the above equations and show that

C+ω1 =
(
1
0

)
= C−ω1 ,

C+ω2 =
(
0
1

)
= C−ω2 ,

Hint: This should be trivial, since the matrixΛ is diagonal!

The different vectors that satisfy this eigenvalue equation are known as the Normal Modes of the system,
and their corresponding eigenvalues are known as the normal mode frequencies.

Important Note: (Just to make sure you don’t forget)

(a) The eigenvectors of theΛmatrix are the normal modes, a special linearly independent basis
that is the “physical” basis of our problem.

(b) The eigenvalues of theΛmatrix are the normal mode frequencies, since the solutions change
in time according to these frequencies.

The general solution to this differential equation is thus given by:

X(t ) =
(

x1(t )
x2(t )

)
= D1

(
1
0

)
e iω1t +D2

(
1
0

)
e−iω1t +D3

(
0
1

)
e iω2t +D4

(
0
1

)
e−iω2t =

(
D1e iω1t +D2e−iω1t

D3e iω2t +D4e−iω2t

)
(6)

Note that even though (for example) ±ω1 have the same eigenvectors (or normal modes), they each have
a different exponential term. The resulting solution is just that for two independent harmonic oscillators,
and the different constants Di will be determined by the initial conditions.
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The reason this problem was simple (nay, trivial) was because the matrix Λ was already diagonal. The
reason the matrixΛwas diagonal was because the two masses did not “talk” to each other. In other words,
they weren’t “coupled” to each other. We will now allow for some coupling by introducing a spring with
some new spring constant k2 in between them. Now, the force on the mass m1 will also depend on the
position of m2, and vice versa.

2.2 Two coupled masses

Figure 2: Two masses are allowed to oscillate as before, but are further coupled by a spring k2.

Exercise: Choose m1 = m = m2 and repeat the above procedure in the previous subsection to
this problem. Find theΛmatrix such that

d2

dt 2 X =−ΛX.

(a) Guess a solution of the form Cαe iαt , and find the values of α2 possible. (Hint: These are just
the eigenvalues ofΛ.) These are the normal mode frequencies. Show that they are

ω2
1 =

k1

m
ω2

2 =
k1 +2k2

m
.

(b) Find the column-vectors Cα that correspond to each eigenvalue α2. These are the normal
modes. You should find that

ω2
1 has eigenvector →

(
1
1

)
ω2

2 has eigenvector →
(

1
−1

)

If you’ve done the above calculations correctly, you should find the following:

Λ=


k1 +k2

m
−k2

m

−k2

m

k1 +k2

m


and the general solution X(t ) is

X(t ) =
(
D1e iω1t +D2e−iω1t

)(
1
1

)
+

(
D3e iω2t +D4e−iω2t

)(
1

−1

)

where the Di s are determined by the initial conditions. As before, these four arbitrary constants are de-
termined by the initial conditions (x1(0), ẋ1(0), x2(0), ẋ2(0). Looking closer at the solution, you should be

5



PHY2410 – Oscillations, Waves, and Optics Spring 2022

able to see that it can be written as

X(t ) = Function with frequency ω1 ×
(

1
1

)
+Function with frequency ω2 ×

(
1

−1

)

As we shall see, this is a characteristic feature of such equations.

2.3 General procedure to solve coupled differential equations

Armed with our two examples, we can now generalise the method to solve such systems of coupled dif-
ferential equations.

Write out the differential equations Looking at the physical system, use Newton’s law to write out the
force on each mass (and therefore get n differential equations).

Convert it to matrix form Define an n−dimensional column vector X, and write the above equations as
a single matrix equation

Ẍ =−ΛX.

Find the eigenvalues ofΛ These eigenvalues ω2
1,ω2

2, . . . ,ω2
n are the normal mode frequencies (squared).

Find the eigenvectors ofΛ Using the eigenvalues found, the eigenvectors can be obtained which are
called the normal modes. These eigenvectors vi represent combinations of x1(t ), x2(t ), . . . , xn(t )
which each oscillate at a specific frequency ωi .

Write out the general solution The general solution is given by

X(t ) =
(
D1e iω1t +D2e−iω1t

)
v1 +

(
D3e iω2t +D4e−iω2t

)
v2 + . . .+

(
D2n−1e iωn t +D2ne−iωn t

)
vn.

Determine the constants Di The 2n constants are determined by setting the n initial positions of the
masses, and their n initial velocities. Once this is done, the entire problem has been solved.

2.4 Example: Solving a harder system

Let’s attempt to solve the system in Figure (3). The first step is to determine the differential equations that
this system satisfies. Each mass is attached to two springs on either side, and so will have two restoring
forces due to them. It’s very important to get the signs of these terms correct, and here’s a simple trick to
do that: imagine a snapshot of the system, and choose 0 < x1 < x2 < x3 (i.e. all the masses are displaced
in the same direction – to the right which we will take as being “positive” displacement). As we will show
below, this makes it easy to write out the equations.

Mass 1 The force on m1 is due to the springs k1 and k2. We have chosen 0 < x1 < x2. Since x1 is positive,
the spring k1 is extended to the right, so it tries to pull m1 with a force −kx1 (to the left).4 In the case
of the spring k2, since x2 − x1 > 0, the spring has been extended. This spring would like to move m1

to the right (it would pull m1 towards its centre), and so the force due to it is +k2(x2 −x1). Thus

m1ẍ1 =−k1x1 +k2(x2 −x1).

4If we had chosen an x1 that was to the left (i.e. negative), then this would still be true, since the net force would be positive, i.e.
to the right.
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Figure 3: Three masses are connected by four springs on a frictionless surface.

Figure 4: Consider a snapshot of each of the masses moved by a small amount. Without loss of generality,
choose 0 < x1 < x2 < x3.

Mass 2 The force on m2 is due to the springs k2 and k3, and we have chosen 0 < x1 < x2 < x3. We’ve seen
that the spring k2 is extended by a length x2 − x1, and so it would like to pull m2 towards its centre,
which is to the left. Thus, the force due to k2 is −k2(x2 − x1). In the case of spring k3, it has been
extended by a length x3 − x2 > 0, and so it would like to pull m2 towards its centre, i.e. to the right.
Thus

m2ẍ2 =−k2(x2 −x1)+k3(x3 −x2).

Mass 3 The force on m3 is due to k3 and k4. As before, since x3 − x2 > 0, m3 is pulled to the left with a
force −k3(x3 − x2). It is also pushed to the left with a force −k4x3 by the last spring that has been
compressed, so

m3ẍ3 =−k3(x3 −x2)−k4x3.

Exercise: Write the above system as a matrix equation, and show that the matrix Λ is given
by

Λ=



k1+k2
m1

− k2
m1

0

− k2
m2

k2+k3
m2

− k3
m2

0 − k3
m3

k3+k4
m3



We will now simplify the problem greatly by choosing k1 = k2 = k3 = k4 = k, and m1 = m2 = m3 = m. We
can also call ω2

0 = k/m. This greatly simplifies the matrixΛ to:

Λ=ω2

 2 −1 0
−1 2 −1
0 −1 2


We can now find the normal mode frequencies, and the normal modes.
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Exercise: Show that the eigenvalues ofΛ are

ω2
1 = 2ω2

0

ω2
2 = (2−p

2)ω2
0

ω2
3 = (2+p

2)ω2
0

and find their corresponding eigenvectors. Use this to find the general solution.
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