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1 Symmetry as an operation

The notion of symmetry is one that we are familiar with. For example, if I were to ask the following ques-
tion: which is more symmetric, a square or a circle?, you would all probably intuitively know the answer. If
I asked you to justify your answer, you would probably say something as follows:

(a) If we rotate a circle by any angle about its centre, it looks identical to itself. However, for a square,
we need to rotate it by exactly 90 degrees in order for this to happen. As such, the circle has more
“actions” that can keep it symmetric, as opposed to a square.

(b) Similarly, if I placed a mirror passing diametrically through the centre of the circle at any angle, then
the half-circle and its reflection would look identical to the full circle. However, for a square, there
are only four such axes of reflection which leave the figure unchanged.

These are all true. However, you might not be able to formulate this into a mathematically coherent form.
Let us now try to make this more rigorous.

1.1 The symmetry matrix

To begin, let us consider the case in which we are dealing with discrete objects: say, masses on a beaded
hoop, as shown in Figure (1). Now, imagine that every mass could be represented as components of a
single vector. Then, if we start counting from the mass directly at the top and move clockwise, we can see
that the total “state” of the system can be described by the vector

V =


θ1

θ2

θ3
...
θN


Now, as we saw, the entire system would look identical if we rotated it (say) counter-clockwise by an angle
φ = 2π/N . In other words, if you happen to leave the room for a cup of coffee and one of your friends
came by and rotated the system by this angle, you wouldn’t be able to tell anything was amiss when you
returned. Clearly, this is equivalent to relabelling our system, with the mass formerly known as θ1 being
labelled θ2, and so on. Such a transformation is linear, since we can find a matrix that can transform
the original vector to the new one. You should be able to do this relatively painlessly, since it’s a matrix
that – when acted on a vector – moves everything down by one step. As such, it is a matrix with all the
next-to-diagonal entries being 1, one left-most corner entry being 1, and all the others being 0.
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Figure 1: N masses are placed on a hoop in a symmetric fashion, separated by equal angles subtended at
the centre of the hoop. The system is thus symmetric under rotations by any integral multiple of the angle
φ= 2π/N .

V ′ =


θ2

θ3
...
θN

θ1

=


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

1 0 0 0 . . . 0

 ·


θ1

θ2

θ3
...
θN

= S ·V (1)

Of course, this is just the action of one such rotation. But it should be clear that we could just as well have
rotated the system the angle 2×2π/N , and we’d still have no way of telling that the system has changed.
We could, of course, write down a matrix for such a transformation, but we don’t need to because we can
just realise that such a transformation is essentially just two successive rotations by an angle 2π/N . Thus,
it should be obvious that

V ′′ =


θ3

θ4
...
θ1

θ2

=


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

1 0 0 0 . . . 0

 ·


θ2

θ3
...
θN

θ1

=


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

1 0 0 0 . . . 0


2

·


θ1

θ2

θ3
...
θN

= S2 ·V (2)

You should also be able to see that – because of the structure of space – if we repeated this process n times,
we should come back to our starting point: this is not a property of the system, but of space itself, since by
definition, a rotation by 2π leaves the system unchanged. The mathematical consequence of this is that
the successive action of S N times leaves the system unchanged. Therefore, such a transformation is the

identity transformation. As a result, we have a powerful statement:

SN = IN×N (3)
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Exercise: Explicitly show the above relation for the case where N = 3.

Exercise: Show that the determinant of S = 1.

It turns out that this has great consequences to the eigenvalues and eigenvectors of the matrix S, as we

shall now see.

1.2 The eigenvalues of the symmetry matrix

Let us first establish a simple but powerful result: any power n of the matrix S has the same eigenvectors

as S, with eigenvalues being the original eigenvalues raised to n. It should be quite easy to show this:

suppose that v is an eigenvector of S with eigenvalue β. In this case,

Sn · v = Sn−1S · v =βSn−1 · v =β2Sn−2 · v = . . . =βn v . (4)

Interestingly, I am not able to show trivially that all the eigenvectors of Sn are the eigenvectors of

S. Perhaps this is not true in general. If any of you can come up with a proof, I’d be interested to

hear it.

Addendum: Thinking about it, it’s clear that all the eigenvectors of Sn need not be eigenvectors

of S. The proof is simple by the contrapositive method: consider a matrix such that Sn = I (like

we have right now). Now, any arbitrary vector is an eigenvector of the identity I by definition.
However, clearly not every vector is an eigenvector of S! Thus, not every eigenvector of Sn is an

eigenvector of S.

Because of the above result, we can very easily compute the eigenvalues of S as follows. Suppose that vk

represents an eigenvector of S with eigenvalue βk . In this case, we know that

SN · vk =βN
k vk =⇒ βN

k = 1, (5)

where in the last step we’ve used the fact that the eigenvalues of the identity matrix are all 1. As a result, it
should be clear that the eigenvalues βk are the N−roots of unity!

1.3 The roots of unity

If you’re not used to working with complex numbers, solving the above equation might seem very strange
to you. The way this is usually done is the following: we write the right hand side (i.e. the number 1)
as

1 = e i 2π = e i 2πk , k ∈Z, (6)

which can easily be seen from the periodicity of the complex exponential. You could also use Euler’s
formula exp(iθ) = cosθ+ i sinθ to see this explicitly using the more familiar periodicity of the sine and
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cosine functions. Now, we see that because of the presence of k, when the root of 1 is taken with respect
to N , we have

βk = e i 2πk/N . k ∈ 0,1,2, . . . N −1 (7)

Notice how now there are only N allowed values of k, ranging from 0 to N −1. This should not be surpris-
ing, since the equation we’re solving for is a polynomial equation of order N , and it should have at most
N roots.

Exercise: Show that if k = N , you get back β0, and if k = 1, you get back β1, and so on.

The roots of unity have very interesting properties and I won’t list all of them, but here are a couple that
you might find useful. You should try to show all of these properties.

(a) N = 10 (b) N = 20 (c) N = 100

Figure 2: Plots of the N−th roots of unity for different values of N . The roots always lie on a unit circle,
and as N increases, they become more and more dense.

(a) These are all complex numbers (except for the ±1), and they all lie on a unit circle on the complex
plane, separated by a constant angle 2π/N , as shown in Figure (2).

(b) As N increases, these roots get squished together, but they still lie on the same unit circle.

(c) Multiplying each of these roots by β1 = e i 2π/N , which is equivalent to a anticlockwise rotation in the
complex plane by 2π/N , moves you from one root to the other. Thus,

βk+1 =β1βk (8)

(d) If β is some complex root of unity, then so is β−1. Furthermore, if β 6= ±1, then β−1 is a different root,
since β−1 = β∗, the complex-conjugate of β. Thus, taking the inverse of β gives a reflection about
the real axis.

Exercise: Show that when N is odd, β=−1 is not an N−th root of unity.

Exercise: Show that when N is even, there are 2 real and N − 2 complex roots, and when N is
odd there is only 1 real root and N −1 complex roots. In each case, there are an even number of
complex roots of unity.
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1.4 The eigenvectors of the symmetry matrix

Given that we’ve found the eigenvalues of S, we can easily find the eigenvectors. Suppose that Ak repre-

sents an eigenvector of S. Notice that since we’ve assumed that A is an eigenvector of S,

S ·



Ak
1

Ak
2

Ak
3

...

Ak
N


=



Ak
2

Ak
3

...

Ak
N

Ak
1


=βk



Ak
1

Ak
2

Ak
3

...

Ak
N


(9)

Thus, we can compare the entries on the left and right hand sides to say that

Ak
2 =βk Ak

1

Ak
3 =βk Ak

2 =β2
k Ak

1

...

Ak
N =βN−1

k Ak
1

(10)

Now, since we have the liberty to rescale an eigenvector, we can choose to set one of its component to be
1. If we choose Ak

1 = 1, we have

Ak =



1

βk

β2
k
...

βN−1
k


(11)

Exercise: Using the explicit form of Ak given above, show that the action of S (which corresponds

just to shifting every element of the vector down by one “rung”) corresponds to multiplying the
entire vector by βk .

Note: Remember that there are N different values of βk here, one for each root of unity, each
of which corresponds to a different eigenvector Ak . The elements of each of the eigenvectors
are the different powers of each βk . You should be able to see that the elements of the different
eigenvectors will all be the same, just permuted in different ways!

2 Discrete rotational symmetry

If a system is truly invariant under the action of symmetry, then the physics of a system should not depend
on which of the different symmetric configurations we choose to work with with. For example, let us
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Figure 3: Consider a simple physical system represented above, with three identical masses connected by
three identical springs.

consider a system with three masses connected by identical springs. You and two of your friends decide
to solve this system, but you each decide to choose a different “first” mass. As a result, what you call mass
1 might be what your friend calls mass 2 or mass 3. However, since the system is truly symmetric about
this choice, you should get exactly the same equations of motion for the system. In particular, suppose
you choose the top-most mass to be mass 1. In this case, you would be working with a vector that looks
like

V =
θ1

θ2

θ3

 .

However, your friend would be working with a vector which would look like

V ′ =
θ2

θ3

θ1

 .

If you now solved for the complicated motion for the system, and got different equations for V (t ) as a
function of time, it would not in general be the same as the vector V ′(t ) that your friend obtained. Now, if
your friend wishes to compare her results with yours, she would need a way to transform your results to
be compatible with hers. If you think about this for a bit, you should realise that all she needs to do is act
the symmetry matrix for this problem (the 3×3 symmetry matrix S), since we know that V ′ = S ·V .

We can, however, be even more restrictive: suppose you had obtained the following (matrix) equations for
the motion of the three masses

dV

dt
=−Λ ·V , (12)

and your friend obtained
dV ′

dt
=−Λ′ ·V ′. (13)

But we know that the choice of one of these symmetric configurations should not modify the underlying
physics, meaning that the matrix Λ which contains all of the physical content of the problem should be

the same between you and your friend. In other words, we need that Λ=Λ′. This is a curious condition,
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so spend some time thinking about it. The idea is this: since all of the choices for V are equivalent, the
matrix Λ should not depend on which of the symmetric configurations you chose to define your system.

Indeed, if you look at your system, it should be quite obvious that the symmetry indicates that both you
and your friend have exactly the same Λ, since it only depends on the springs and masses on either side,

which are identical!

Let us now see what the consequences of this are. Since the S is a constant, we can take your equation and

act S on it to try and obtain the equation that your friend had. In this case:

d

dt

(
S ·V

)
=−S ·Λ ·S−1

(
S ·V

)
, (14)

where we have used the fact that I = S−1 ·S. Now, since we’ve seen that V ′ = S ·V , we can compare this

equation to the one given immediately above to show that

Λ′ = S ·Λ ·S−1. (15)

Of course, our physical requirement of symmetry further enforces thatΛ′ =Λ. Putting all of this together,

we get a very important result:

S ·Λ=Λ ·S ⇐⇒ S ·Λ−Λ ·S ≡
[
Λ,S

]
= 0. (16)

When we see something like this, we say that the matrices commute, since it doesn’t matter in which order
we apply them to a vector. What this means is that if you act the matrix Λ on your vector (which would

give you your accelerations for the different masses), and then transformed it to your friend’s coordinates
by acting S on it, it would give you exactly the same results as if you friend took her state vector, acting on

it by S to bring it to your coordinates and actedΛ on it.

2.1 Commuting matrices

When you have two commuting matrices, it turns out that many of the properties of the matrices are
shared. In particular, the fact that two matrices commute tells us that we can find a common eigenbasis.
i.e., the eigenvectors of one of the matrices is the same as the eigenvectors of the other one.

You should now see why we went through all the trouble to find the eigenvectors of S. These vectors were

much easier to compute than the eigenvectors of Λ, but – given that the two matrices commute – we can

now be certain that the eigenvectors of S are also eigenvectors ofΛ.1

We can prove this quite simply in the case of non-degenerate eigenvalues. Suppose that all the eigenvec-
tors of S have distinct eigenvalues (as they do, which you should be able to see from our calculations in

the previous section). The proof is as follows: begin by assuming that A is an eigenvector of S with an

eigenvalue β. In this case, we know that
S · A =βA. (17)

1There is a very important caveat here that you will appreciate during your course on Quantum Mechanics next semester. It is
very easy to show that if [P,Q] = 0 for two finite-dimensional matrices, then every eigenvector of P is an eigenvector of Q and vice-
versa, provided that the system has no degeneracy, i.e., every eigenvector has a distinct eigenvalue. If this is not the case, the result
is still true in a restricted sense: not every eigenvector of P is an eigenvector of Q, but it is possible to form one eigenbasis which is
common between the two. This involves a little more work to prove, and is usually done at the start of a Quantum Mechanics course.
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We can now act this equation on both sides byΛ. In this case, since β is a constant, we can write:

Λ ·S · A =βΛ · A. (18)

Now, since the matrices commute, we can writeΛ ·S = S ·Λ, and therefore we have

S ·
(
Λ · A

)
=β

(
Λ · A

)
. (19)

In other words, if A is an eigenvector of S, then so is Λ ·V ! More importantly, Λ ·V is an eigenvalue of S

with exactly the same eigenvalue as A! However, we claim that the eigenvectors of S are non-degenerate:

meaning that every eigenvector has only one distinct eigenvalue. As a result, it must be that Λ · A is pro-

portional to A, since there is no other way that it could have the same eigenvalue. Let us call this constant
of proportionality ω2 (for reasons that should be clear). In this case, you should be able to see that we
have:

S · A =βA =⇒ Λ · A =ω2 A, (20)

or in other words if A is an eigenvector of S, it is also an eigenvector ofΛ!

2.2 Computing the normal modes and their frequencies

As can be seen from the previous section, the normal modes have already been computed for our prob-
lem, since they are just the eigenvectors of S! In order to compute their eigenvalues, all we need to do is
compute

Λ · Ak =ω2
k Ak . (21)

However, since we know that the first component of Ak is always 1 by construction, we just need to com-
pute the first row of the matrix multiplication! Notice also that we have so far not needed to even begin
constructing the Λ matrix, and therefore our method is extremely general, and can be applied to any

problem which has a discrete rotation symmetry described in the previous section.

Exercise: Show that the matrixΛ for the 3-mass problem can be written as

Λ=−ω2
0

 2 −1 −1
−1 2 −1
−1 −1 2

 (22)

Exercise: Use the above result to show that for the 3-mass problem, the eigenfrequencies satisfy
the equations (with N = 3). Then, show that the equations below actually work for any N . (You
will need to guess the form of theΛmatrix in the case of N masses.

ω2
k =ω2

0

(
2−βk −

1

βk

)
= 2ω2

0

(
1−cos

(
2πk

N

))
= 4ω2

0 sin2
(
πk

N

)
. (23)
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We have something quite interesting to note here: for all values of k except k = 0 and k = N /2 (which
correspond to βk = ±1) we have two different values of k which give the same normal mode frequency!
For example, k = 1 gives the same normal mode frequency as k = N −1, k = 2 gives the same frequency
as k = N −2 and so on! (This should make it clear why both k = 0 and k = N /2 – if it is a root – have been
excluded.) Thus, while S does not have any degeneracy, Λ seems to have a lot of degeneracy! It turns out

that this degeneracy is essential to solving the problem.

9
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Exercise: Show that when βk =±1, i.e. when k = 0, N /2, the normal modes Ak have only real en-
tries.

Exercise: Now show that for all βk 6= ±1, i.e. all k 6= 0, N /2, Ak and AN−k are complex conjugates.
Both of these eigenvectors have the same eigenvalue ω2

k .

Exercise: Show that if you have two eigenvectors V 1 and V 2 with the same eigenvalue ω2, then
any linear combination aV 1 +bV 2 also has the same eigenvalue ω2.

Exercise: Now, the normal modes for a system of oscillating masses should be real numbers.
The degeneracy allows us to do this quite simply. For every such pair, construct two real normal
modes

B k = Ak + AN−k

2
and B̃

k = Ak − AN−k

2i
(24)

Exercise: Show that the normal modes of this system have three classes:

(a) A zero frequency normal mode (corresponding to k = 0) which looks like
1
1
1
...
1

 ,

(b) The real parts of Ak , which look like

1
cos2πk/N
cos4πk/N
cos6πk/N

...
cos2(N −1)π/N


,

(c) The imaginary parts of Ak , which look like

0
sin2πk/N
sin4πk/N
sin6πk/N

...
sin2(N −1)π/N


.

10



PHY2410 – Oscillations, Waves, and Optics Spring 2022

3 The infinite coupled system: discrete translation symmetry

We can now extend what we have done so far to an infinite system shown in Figure (4) which possesses
a different – although related – symmetry: discrete translation symmetry. Consider an infinite system of
coupled oscillators, coupled just as before to their nearest neighbours. Just as before, this system pos-
sesses a symmetry: if you went out of the room for a minute and came back in, and your friend shifted
the entire infinite system by the distance between two masses (say, a) then when you returned you would
have no way of knowing if such a shift had even been made. In other words, the system is symmetric
under discrete translations by a distance a.

Figure 4: An infinite system of springs and masses: the masses are all identical mi = m, and separated by
a distance a. The masses are indexed by an integer j , and an arbitrary mass is indexed as j = 0.

As before, let us translate this into mathematics. We can describe our system – just as we did in the peri-
odic case – using a vector comprising the positions of each of the masses. However, unlike the periodic
case, this would now be an infinite vector. Thus, its entries would look something like

A =



...
A−1

A0

A1

A2
...

AN

AN+1
...


,

where we have chosen one arbitrary mass to be the “zero-th” mass.2 Now, what would our symmetry
operation do to the system? Well, if we were to move the entire system leftwards by one unit a, then this
would just be equivalent to moving A0 → A1, A1 → A2, and so on. In general, this would be equivalent to
moving A j → A j+1. The matrix that performs such an action is very similar to the S matrix we saw in the

previous section, and we will call it T (a) to distinguish it from the previous S.

Exercise: Convince yourself that the form of the T (a) matrix is(
T (a)

)
i , j

= δi ,i+1.

2Notice how the translation symmetry is basically a restatement of the fact that one could choose any mass to be the “zero-th”
mass, since they are all identical.
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Exercise: Now convince yourself that the form of the K matrix is:



. . .
...

...
...

... . . .

· · · 2k −k 0 0 · · ·
· · · −k 2k −k 0 · · ·
· · · 0 −k 2k −k · · ·
· · · 0 0 −k 2k · · ·
. . . ...

...
...

...
. . .


(25)

As before, since we have the symmetry matrix and know its action on any vector, we can use the eigenval-
ues of T (a) matrix to find its eigenvectors, just as we did for the symmetry matrix in the previous section.

Let us first guess the form of the eigenvectors. Remember that the action of T (a) was to shift the entire sys-

tem leftwards, and so – just as we had for the case of discrete rotations – we can say that the eigenvectors
of T (a) have components which satisfy

T (a) · A =β A =⇒ A j+1 =βA j . (26)

What can we say about β? Since there are an infinite number of masses, we do not possess the simplifi-
cation that we did in the previous section, i.e. we cannot say that after some fixed number of iterations
k, we’d get back the identity matrix. This is to say that for an infinite system, we can translate it an infi-
nite number of times and still never get back to where we originally were, which should make intuitive
sense. Therefore, we have no restriction on β, it can take any value, and has – associated with it – a unique
eigenvector Aβ (up to some overall multiplicative constant).

Exercise: Show indeed that A j+1 =βA j , and A j−1 =β−1 A j .

Thus we can show that the general form of Aβ is:

Aβ =



...

β−1

1

β

β2

β3

...

βN

βN+1

...



, (27)

12



PHY2410 – Oscillations, Waves, and Optics Spring 2022

where we have chosen one of the components, say A0, to be 1, and for all other j , A j = β j . Now, just as
before, since the eigenvectors of T (a) are also eigenvectors of Λ = M−1 ·K , we can find the eigenvalues

of Λ, which – just as before – are the normal mode frequencies ωβ (notice how we add a subscript β to

denote that each eigenvector possesses its own eigenfrequency).

Exercise: By multiplying row 0 of theΛwith Aβ, show that

ω2
β =

k

m

(
2−β− 1

β

)
. (28)

We notice something interesting: since for (almost) every β, β 6=β−1, we see thatωβ =ω1/β. Thus, for each
pair of numbers β and β−1, there is a unique frequency ω2

β
.

Exercise: There are only two values of β= 1,−1 for which this is not true. Why do you think this is
the case? Show that for these values, the frequency is

ω2
±1 = 2k ∓2k. (29)

Exercise: β= 1 represents (again) the zero-frequency mode. What do you think it represents phys-
ically?
Answer: It represents a global translation of the system along the x−axis. Under such a translation,
the energy of the system remains constant. It turns out that zero-frequency modes, symmetries
of systems, and conservation laws are intimately linked to each other. You will learn about them
much later in advanced courses in physics, although you might not be able to make the connec-
tion back to these “simple” mechanical examples.

Exercise: Now, go back and repeat the analysis for a system of coupled pendula, coupled by
springs. Would such a system also possess a zero-frequency mode?

Exercise: Now, go back to the previous section and look at the zero frequency mode there. What
do you think that mode represents?
Answer: There the zero frequency modes represent uniform rotations on the bead, at some con-
stant speed, so that the centre of mass of the system remains conserved.a

aI am not completely sure about this yet. I will confirm this with someone more knowledgeable, in case there is some
subtlety that I am missing!

The fact that every distinct β and 1/β have the same frequency will have profound implications when we
move on to the next section and try to solve finite systems using the result for an infinite system. Note that
this is a curious feature of only one-dimensional systems; higher-dimensional systems do not possess it,
and are consequently much harder to solve in this method.

4 Solving a finite system using an infinite system

We now have a very interesting possibility: as we have seen, the infinite system offers us an abundance
of modes: we find an infinite number of normal modes, parametrised by β, which could be any real
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number. Thus, our normal modes and their frequencies are uncountably infinite! Indeed it would appear
that an infinite system possesses every possible frequency conceivable.3 Now, let us see if we can use this
embarrassment of riches to solve a more restricted problem, that if N masses with fixed walls at either end.
Thus, we have N masses, numbered from 1 to N , with un-moving and rigid walls at either end.

Figure 5: A finite system of springs and masses: again, the masses are all identical mi = m, and separated
by a distance a. The masses are indexed by an integer j , with j running from 1 to 4.

The idea is simple, but very deep:suppose for a minute that your system was actually infinite, but
that you are only looking for the normal modes that kept the mass at 0 and the mass at N+1 always
at rest. Remember that our interactions are local, meaning that every mass only knows what’s
happening to the masses on either side of it. This means that there is no difference between our
finite system, and this subset of normal modes that keep the masses 0 and N +1 fixed.

Exercise: This is a complicated idea. Spend some time absorbing it.

So if you showed someone a video of N masses behaving a certain way, it would not be possible for them
to distinguish between the motion of a finite system with fixed walls, or a combination of normal modes
that keep masses 0 and N +1 fixed.

Figure 6: A finite system of springs and masses as a section of an infinite system: the masses at j = 0 and
j = N +1 = 5 are held fixed artifically, and only those modes are considered which keep these two masses
fixed.

Armed with this idea, we can now try to “filter” out those normal modes that keep the masses 0 and N +1
fixed in the infinite case. In order to do this, we need to define a new set of modes (call them Bβ) which

have the same set of eigenfrequenciesωβ, but which also satisfy the conditions that Bβ
0 = 0, and Bβ

N+1 = 0.
As we shall see, the reason that we can find such a new set of vectors is precisely because for everyβ 6=β−1,
there are two different eigenvectors with the same frequency ωβ.

Let us start by trying to satisfy the condition on the mass j = 0. Since we know Aβ
0 = 1, and A1/β

0 = 1. Thus,

a good guess to get Bβ
0 = 0 is to define:

Bβ = Aβ− A1/β. (30)

3If you are not a little disturbed by this, you have probably not understood it.
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Exercise: Show that Bβ
0 = 0 for all β.

So far, we have not really made any restriction onβ. Indeed, any value ofβwould give us Bβ
0 = 0. However,

it is the second boundary condition that will give us a restriction on β.

Exercise: Show that

Bβ

N+1 = 0 =⇒ βN+1 − 1

βN+1
= 0.

Exercise: Using the above result, show that if we want the right-hand side to be zero, we require∣∣β∣∣ = ∣∣1/β
∣∣. Of course, we are not discounting complex values of β, since we saw in the previous

section that that was perfectly acceptable so long as we got real eigenvectors at the end. Use this
to show that we can write β= exp(iθ), where θ is some real number.

Exercise: Now, use the previous result to show that the general form of the vector B is:

Bθ =



...
0

e iθ−e−iθ

e2iθ−e−2iθ

...
e i (N+1)θ−e−i (N+1)θ

...


∝



...
0

sinθ
sin2θ

...
sin(N +1)θ

...


.

We see something very strange occurring: the different normal modes B , now parametrised by θ instead
of β, can be written as a column of different sines! Therefore, we can now ask ourselves the following
question: what values can θ take, so that the (N +1)−th mass always stays fixed? Well, clearly, if

(N +1)θ = nπ =⇒ for θn = nπ

N +1
, (31)

this is satisfied. (It’s also satisfied when θ = 0, but that’s pretty boring.) Thus, for all these values of θ,
the normal modes are those that keep the masses at 0 and at N + 1 always fixed. Now, we can make
two important cosmetic simplifications. First, since we are only interested in the system between masses
1 and N , we can ignore all other terms in the eigenvector B , and second, we can use n to denote the
different normal modes, instead of θn . As a result, we can say that the normal modes of such a system can
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be written as

B n =



sin
( nπ

N +1

)
sin

(
2nπ

N +1

)

sin

(
3nπ

N +1

)
...

sin

(
N nπ

N +1

)



. (32)

Thus, the general expression for normal modes of a finite number of masses between two walls is given
by sine functions, as shown in Figure (7), with the j−component being given by

B n
j = sin

(
j nπ

N +1

)
, j = 1,2,3, . . . , N . (33)

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 7: Relative amplitudes for the four different masses in each of the different normal modes. Each
normal mode is associated with an “invisible” sine function with higher and higher frequency, with the
amplitudes of each mass being given by the value of this sine function at the block’s position.
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We can now find the normal mode frequencies for these modes, using Equation (28).

Exercise: Show – using Equation (28) – that the normal mode frequencies can be written as:

ω2
n = 2k

m
(1−cosθn) = 4k

m
sin2

(
θn

2

)
=⇒ ωn = 2

√
k

m
sin

(
nπ

2(N +1)

)
. (34)

Notice what the above equation is telling you: every normal mode, enumerated by n, has its own fre-
quency ωn (this much we know and expect, since that was the very definition of a normal mode), and
apart from overall factors of k/m and so on, this frequency depends purely on the specific mode (n) and
the total number of masses (N ). Therefore, if we define ω0 =p

k/m, we can say that ω1 = 2ω0 sin(π/10),
ω2 = 2ω0 sin(2π/10), ω3 = 2ω0 sin(3π/10), ω4 = 2ω0 sin(4π/10): “higher” modes have higher frequen-
cies.

Exercise: Define a “length” L = (N +1)a, and write

ωn = 2

√
k

m
sin

(nπa

2L

)
= 2ω0 sin

(nπa

2L

)
. (35)

You can now argue that the “wavelengths” of the different modes are given by λn = 2L/n. Using
the definition of a wave-vector as kn = 2π/λn , show that

ωn = 2ω0 sin

(
kn a

2

)
. (36)

Such a relation between ω and k is known as a dispersion relation, and we will see such relations
very often during the rest of this course.

Notice that the wavelength of the modes kn and the frequencies of the modes ωn are not linearly related,
they are related by a sine function. What this means is that the periodicity in space (as shown in Figure
(7)) and the periodicity in time (given by Equation (36)) are not linearly related to each other. As a result,
the quantities

ωn

kn
and

dωn

dkn

are not equal. This might not seem like an important thing, but you should come back and look at this
problem when we begin to study waves on a continuous string.

4.1 Another example: beads on a string

The entire analysis we’ve done so far could just as well be extended to a slightly different – although math-
ematically identical – problem, that of beads on a string. The analysis for such a system is mathematically
identical to the analysis we did for masses connected by springs.
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Figure 8: A beaded string: the masses, each with mass mi = m and with coordinates xi and yi , are spaced
a distance a apart and connected by a massless string, held together by some tension T . We assume small
oscillations, meaning that the angles

∣∣yi
∣∣¿ a, and so θi ¿ 1.

The angles θi and θi+1 are given by

tanθi = yi − yi−1

xi −xi−1
, =⇒ θi ≈ yi − yi−1

a
,

tanθi+1 = yi+1 − yi

xi+1 −xi
, =⇒ θi+1 ≈ yi+1 − yi

a
,

(37)

where we have used the small-angle approximation, i.e. that tanθ ≈ sinθ ≈ θ, since the angles are small.

Exercise: Show by applying Newton’s laws to the bead i that the equations of motion in the y and
x directions are given by:

mÿi =−Ti sinθi +Ti+1 sinθi+1,

mẍi =−Ti cosθi +Ti+1 cosθi+1.
(38)

Now, we assume that the motion is only in the transverse direction, meaning that the beads have no
horizontal acceleration. This means that

Ti cosθi = Ti+1 cosθi+1, (39)

and if we further use the small angle approximation to say that |θ|¿ 1 =⇒ cosθ ≈ 1, we see that

Ti ≈ Ti+1 = T, (40)

i.e. the tension is constant in the string.
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Exercise: Now, using the equation for the transverse motion and the small-angle approximation,
show that:

ÿ ≈ T

m
× (θi+1 −θi ) (41)

Exercise: Next, write the angles in terms of the transverse coordinates y to show that

ÿi =ω2
0

(
yi−1 −2yi − yi+1

)
, (42)

where ω2
0 = T /ma.

Clearly, the acceleration of the i th mass on the bead is identical in form to the acceleration of the i th mass
in the spring-mass system! As a result, no more calculation is needed, and one can immediately quote the
results of the previous section to describe the movement of the beaded string.

What’s even better, the configurations given in Figure (7) would still hold true. However, while earlier the
red dots represented relative amplitudes, in this case, we can actually use them to represent each bead.
Thus, each dot would show the the position coordinate of each of the beads on the string. Therefore, the
same Figure (7) would also represent a “snapshot” of the string in the different normal modes!

Exercise: Add straight lines – representing segments of the string – in between the “masses” shown
in Figure (7) to get the configuration of the beaded string in the different normal modes.
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