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1 Introduction

Consider a periodic function f (x) that has some period L. This means that the function repeats itself after
every L units. Mathematically, this would mean that

f (x +L) = f (x),

for every value of x. In other words, if we know what the function looks like over one period, we can sketch
it over any interval.

Periodic functions arise very often in physical problems, and thus finding a way to represent them in terms
of simpler functions would be extremely useful. In 1822, a French mathematical physicist named Jean
Baptiste Joseph Fourier was studying the conduction of heat in solids, and found that it should be possible
to express periodic functions of some period L in terms of an infinite series of elementary trigonometric
functions:

f (x) = a0

2
+

∞∑
n=1

an cos

(
2πnx

L

)
+

∞∑
n=1

bn sin

(
2πnx

L

)
. (1)

This is known as Fourier’s theorem.

Exercise: Show that the above equation implies that f (x +L) = f (x). Note that this is just a suffi-
cient condition that a periodic function f (x) be written in this form, not a necessary condition, so
it is not a proof of Fourier’s Theorem.

Fourier’s work was quite controversial when it was introduced, mainly due to the fact that the concept of a
“function” was not as well defined as it is today. The idea at the time was that f (x) was a function if could
be represented as a polynomial, or a finite or infinite combination of elementary functions, like a power
series or a trigonometric series. However, if f (x) had gaps or discontinuities, the general thought was that
it could not be treated as a legitimate function. However, Fourier’s claim was that any arbitrary graph (as
we shall see below) could be treated as a legitimate function, expressible in terms of an infinite series of
sines and cosines! In fact, during one of Fourier’s presentations, Joseph Louis Lagrange – a giant in his
own right – apparently exclaimed that Fourier’s ideas were “nothing short of impossible.”

Shortly after his death, Fourier’s achievements were almost forgotten in France. So much so that Victor
Hugo in “Les Miserables” could write “Il y avait à l’Académie des Sciences un Fourier célèbre que la postérité
a oublié, et dans je ne sais quel grenier un Fourier obscur dont la postérité se souviendra.”1

1“There was a celebrated Fourier at the Academy of Science, whom posterity has forgotten and there is now in some attic an
obscure Fourier, whom the future will remember.” The “other Fourier” was Charles Fourier, a philosopher, was not related to the
physicist.
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Thankfully, Hugo’s prediction does not seem to have come to pass. Many of the most important math-
ematical discoveries of the nineteenth century are directly linked to the theory of Fourier series. It took
some years before the issues surrounding the definition of a function were completely clarified. It is no
accident that the modern definition of a function was first formulated by Dirichlet in 1837, in a paper on
the theory of the Fourier Series. The Fourier Series was also central to Riemann’s 1854 paper in which he
introduced the modern notion of the definite integral.

In what follows, we will describe the applications of the Fourier Series to problems in oscillations and
waves, but you will encounter many of the same problems – in almost identical settings – during your
Quantum Mechanics course next semester.

2 The Fourier Series

There are many equivalent representations of the Fourier Series, all of which differ in their definition of
the period of the function. In the definition given in the previous section, we had assumed the period of
the function to be L. However, it is possible that certain problems would require a period of 2L, or a period
of 2π, and so on. It is straightforward to generalise this to functions of arbitrary period. For now, we will
continue to use the definition given above, with the understanding that:

f (x) = a0

2
+

∞∑
n=1

an cos

(
2πnx

L

)
+

∞∑
n=1

bn sin

(
2πnx

L

)
, −→ f (x) has period L

f (x) = a0

2
+

∞∑
n=1

an cos
(πnx

L

)
+

∞∑
n=1

bn sin
(πnx

L

)
, −→ f (x) has period 2L

f (x) = a0

2
+

∞∑
n=1

an cos(nx) +
∞∑

n=1
bn sin(nx) , −→ f (x) has period 2π

(2)

The strength of the Fourier Series is that the discrete coefficients a0, an , and bn contain all the information
about the function f (x). Furthermore, since these coefficients multiply functions that are defined over the
entire interval, truncating the above series of trigonometric functions gives us a reasonable approximation
of f (x) over the entire period, rather than just near some point like the Taylor Series.2

This is also an important result in signal processing: create sinusoids of different periods is relatively sim-
ple (remember LC circuits) and combining them together in different proportions can lead to arbitrarily
complicated periodic signals on devices like the Digital Oscilloscopes in the laboratory.

We would now like to compute the coefficients a0, an , and bn , given some function f (x). Before we do
this, it’s important to establish some important mathematical results.

2.1 Mathematical preliminaries

2.1.1 Odd and even functions

We will eventually want to compute integrals over different intervals, some of them symmetric, and it
turns out that the behaviour of a function under reflection about the origin can help us evaluate many of
these integrals simply.

2Remember that for a Taylor Series, as you go further away from the point of expansion x0, you need many more terms to approx-
imate the function sufficiently well.
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A function is said to be even if, under a reflection about x = 0, it remains unchanged. In other words,
changing x → −x doesn’t change the function. This means that you could replace your y−axis with a
mirror, and the function and its reflection would look exactly like the entire function would, without the
mirror. In contrast, an odd function is one which flips its sign on such a reflection.

f (x) = f (−x) → Even function

f (x) =− f (−x) → Odd function
(3)

Odd and even functions behave differently over integrals over symmetric domains (say, over (−a, a)).

Exercise: Show that

f (x) is even −→
∫ +a

−a
f (x)dx = 2

∫ a

0
f (x)dx (4)

Exercise: Show that

f (x) is odd −→
∫ +a

−a
f (x)dx = 0 (5)

A standard example of even and odd functions are the cosine and sine functions respectively. We can try
to apply the above results to them.

Exercise: Begin by showing (without doing the integrals!) that∫ L

−L
dx sin

(nπx

L

)
= 0∫ L

−L
dx cos

(nπx

L

)
= 2

∫ L

0
dx cos

(nπx

L

) (6)

Exercise: Next, evaluate the integrals below to arrive at the answers:∫ L

0
dx sin

(nπx

L

)
= (1− (−1)n)L

nπ∫ L

0
dx cos

(nπx

L

)
= 0

(7)

The above results can be consolidated as follows (pay attention to the limits!):∫ L

0
dx sin

(nπx

L

)
= (1− (−1)n)L

nπ

∫ L

−L
dx sin

(nπx

L

)
= 0∫ L

0
dx cos

(nπx

L

)
= 0

∫ L

−L
dx cos

(nπx

L

)
= 0

(8)

2.1.2 Orthogonality

Another important concept that you should already be a little familiar with from linear algebra is the no-
tion of orthogonal functions: functions which are not just linearly independent, but “mutually indepen-
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dent”. This is very similar to how vectors in two dimensional space can be considered orthogonal, and we
would thus like to generalise the notion of the dot-product of vectors to a vector space of functions.

The dot-product in such function vector-spaces, often called a bilinear form by the more mathematically
inclined, is defined using an integral, for example:

〈
f , g

〉= ∫ b

a
dx f (x)g (x).

The above definition can be used – for example – to define the norm (the analogue of the “length” of a
geometric vector) of a function to be:3 ∫ b

a
dx f (x)g (x) = || f ||2.

The scope of such a definition will be explored in a later course,4 but right now we will simply restrict
ourselves to a condition for orthogonality between two functions f and g over some domain (a,b). Two
functions are said to be orthogonal over the domain iff:

∫ b

a
dx f (x)g (x) = 0. (9)

However, just as in the case of normal (geometric) vectors, we can define the orthogonality of a set of
vectors. We define a set of orthonormal5 vectors which are indexed by some i , j , such that:

∫ b

a
dx fi (x) f j (x) = δi j =

{
0, i 6= j

1, i = j
(10)

Happily, the set of all trigonometric sines and cosines forms such an orthogonal set, and can be made
orthonormal by appropriate rescaling. You will, over the course of this ear, become familiar with many
other orthogonal functions like the Legendre Polynomials, the Hermite Polynomials, the Chebyshev Poly-
nomials and many, many more, all defined over different domains.

2.1.3 Identities for the products of trigonometric functions

To prove that the sines and cosines are orthogonal, we will need to multiply them with each other and
perform integrals of the form ∫ b

a
dx sin(kn x)sin(km x),

and such product integrals are not particularly simple to compute using integration by parts. However,
there are some trigonometric identities that make our life much simpler.

3This is often known as the L2−norm, as indicated by the subscript 2 in the notation.
4You will certainly be introduced to a version of this in your Quantum Mechanics course next semester.
5Ortho, meaning orthogonal, and normal meaning that they have been rescaled to have a norm (as defined earlier) of 1.
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The three most important identities are the following:

sin A cosB = 1

2

(
sin(A−B)+ sin(A+B)

)
sin A sinB = 1

2

(
cos(A−B)−cos(A+B)

)
cos A cosB = 1

2

(
cos(A−B)+cos(A+B)

) (11)

The above relations can be proved quite simply using the standard sum identities for trigonometric func-
tions. We will follow a slightly different approach here, using Euler’s relation,

e iθ = cosθ+ i sinθ, (12)

using which we can also define:

cosθ = e iθ+e−iθ

2
and sinθ = e iθ−e−iθ

2i
(13)

Consider the sum of two complex exponentials:

e i (A+B) +e i (A−B)

2
= e i A cosB. (14)

Taking the real and imaginary parts of the above equation we get

cos(A+B)+cos(A−B)

2
= cos A cosB ,

sin(A+B)+ sin(A−B)

2
= sin A cosB ,

(15)

Exercise: Now, use the difference of the same exponentials, i.e.

e i (A+B) −e i (A−B)

2
,

to show that:
cos(A−B)+cos(A+B)

2
= sin A sinB ,

sin(A+B)− sin(A−B)

2
= cos A sinB ,

(16)
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2.1.4 Orthogonality of sines and cosines

We are now equipped to derive the main results that make the Fourier Series so useful, the orthogonality
of the sine and cosine functions.

Result 1: All elements in the set of cosines

{
cos

( nπx
L

)}∞

n=0
are mutually orthogonal in the inter-

val (−L,L), as well as the interval (0,L).

In order to prove this, we need to compute the following integral:∫ L

−L
dx cos

(nπx

L

)
cos

(mπx

L

)
= 1

2

∫ L

−L
dx cos

(
(n +m)πx

L

)
+ 1

2

∫ L

−L
dx cos

(
(n −m)πx

L

)
(17)

Now, when n = m = 0, the overall integral is clearly just 2L. Furthermore, from our results in Equation
(8) regarding the integrals of sines and cosines over the (−L,L) domain, the first integral is clearly zero. If
n 6= m, then the second integral is zero as well. However, if n = m, then the cosine term just becomes 1,
and so we have:

∫ L

−L
dx cos

(nπx

L

)
cos

(mπx

L

)
=


2L n = m = 0,

L n = m 6= 0,

0 n 6= m.

(18)

Exercise: Use the fact that the function being integrated is even to show that

∫ L

0
dx cos

(nπx

L

)
cos

(mπx

L

)
=


L n = m = 0,

L/2 n = m 6= 0,

0 n 6= m.

(19)

Result 2: All elements in the set of sines

{
sin

( nπx
L

)}∞

n=0
are mutually orthogonal both in the

interval (−L,L), as well as the interval (0,L).

As before, we prove this by using the product formulae we spoke of earlier:∫ L

−L
dx sin

(nπx

L

)
sin

(mπx

L

)
= 1

2

∫ L

−L
dx cos

(
(n −m)πx

L

)
− 1

2

∫ L

−L
dx cos

(
(n +m)πx

L

)
(20)

Now, as before, if n = m = 0, the integral is just 0. However, if n = m 6= 0, then by the same arguments as
before, the first integral gives us L, while the second gives us 0. And, as before, if n 6= m, both integrals are
zero. As a result, we have:

∫ L

−L
dx sin

(nπx

L

)
sin

(mπx

L

)
=

{
L n = m,

0 n 6= m.
(21)
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Exercise: Use the fact that the function being integrated is even (remember, the product of two
odd functions is even!) to show that∫ L

0
dx sin

(nπx

L

)
sin

(mπx

L

)
=

{
L/2 n = m 6= 0,

0 n 6= m.
(22)

Result 3: All elements in the set of sines

{
sin

( nπx
L

)}∞

n=0
and the set of cosines

{
cos

( nπx
L

)}∞

n=0
are mutually orthogonal both in the interval (−L,L).

Unlike the previous cases, we now have two separate sets. We have already shown that each individual
set comprises elements that are mutually orthogonal. As a result, all that is left to do is for us to take
one arbitrary element from each set, and to show that their product integral is always zero. We could, of
course, expand the function in terms of a sum of sines and cosines, but it turns out not to be necessary.
Indeed, since the sine functions are odd and the cosine function is even, their product is an odd function.
It should be relatively simple for you to convince yourselves that the integral of an odd function over a
symmetric integral is zero, as we have already shown above. Therefore:∫ L

−L
dx sin

(nπx

L

)
cos

(mπx

L

)
= 0. (23)

Note: Notice how, unlike the previous two cases, the orthogonality only holds over the entire
domain (−L,L), and not over (0,L).

Exercise: Show that ∫ L

0
dx sin

(nπx

L

)
cos

(mπx

L

)
=

(
(−1)m+n −1

)
nL

π
(
m2 −n2

) (24)

Set 0 to L −L to L{
sin

(nπx

L

)}∞

n=0
X X

{
cos

(nπx

L

)}∞

n=0
X X

{
sin

(nπx

L

)}∞

n=0
and

{
cos

(nπx

L

)}∞

n=0
× X

Table 1: Representation of the orthogonality of the different sets of trigonometric functions over different
domains.
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2.2 Computing the Fourier Coefficients

With all of the mathematical preliminaries completed, we can now focus our attention on computing the
coefficients for any arbitrary periodic function f (x). Remember that when our function has a periodicity
of 2L, one could write:

f (x) = a0

2
+

∞∑
n=1

an cos
(πnx

L

)
+

∞∑
n=1

bn sin
(πnx

L

)
. (25)

Given all of our discussion so far about orthogonality and vector-spaces, this representation should re-
mind you of expressing a geometric vector in terms of some projections along the x̂, ŷ , and ẑ directions.
Just as in that case, when we found the projection by dotting the vector with each of the unit vectors,
here too we can compute the analogous projections (i.e. the Fourier Coefficients) using the bilinear form
defined above.

We start by realising the since the integrals of sines and cosines over the entire domain (−L,L) is zero, we
can write

∫ L

−L
f (x)dx = a0

2

∫ L

−L
dx +

L∑
n=1

an

∫ L

−L
dx cos

(πnx

L

)
︸ ︷︷ ︸

=0

+
L∑

n=1
bn

∫ L

−L
dx sin

(πnx

L

)
︸ ︷︷ ︸

=0

.
(26)

From where we get our first Fourier Coefficient, and you can see why a0 is sometimes called the DC com-
ponent of the series, and represents the average of the function over the domain:

a0 = 1

L

∫ L

−L
f (x)dx (27)

Now, we can obtain the other coefficients by exploiting the orthogonality relations we established be-
fore.

Exercise: Show that

an = 1

L

∫ L

−L
f (x)cos

(nπx

L

)
dx

bn = 1

L

∫ L

−L
f (x)sin

(nπx

L

)
dx

(28)

Notice the limits: if you only had sines or cosines in your series, you could always just integrate from 0 to
L. However, the fact that you have both sines and cosines means that the integrals have to be conducted
over the entire period of 2L, since – as we’ve established in the previous section – sines and cosines are
mutually independent only over the entire period of 2L.

The best way to get a handle on this is to actually do some calculations of the Fourier Series of some simple
functions, which is what we’ll be doing in the next section.
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3 Applications to the Plucked and Struck String Problems

One of the important applications of Fourier analysis, although perhaps it can be argued that it is more
an application of the orthogonality of sines and cosines, is the study of waves on a string.

3.1 Solving the wave equation by separation of variables

We begin by looking for solutions to the wave equation

− 1

v2
p

∂2 f

∂t 2 + ∂2 f

∂x2 = 0 (29)

that can be separated into a product of a function purely of time, and one purely of space. We name these
functions X (x) and T (t ), and therefore we are looking for solutions of the form:

f (x) = X (x)T (t ). (30)

Plugging this into the wave equation, and keeping in mind that the partial derivative with respect to t sees
a function of x as a constant and vice versa, we see that the equation can be written as

− 1

v2
p

X (x)
d2T

dt 2 +T (t )
d2X

dx2 = 0, (31)

where we replace the partial derivatives with total derivatives because the functions they act on are each
functions of only one variable. We can now divide the above equation by X (x)T (t ), and separate the terms
so that the left-hand side has only functions of t and the right-hand side has only functions of x:

1

T (t )

d2T

dt 2 =
v2

p

X (x)

d2X

dx2 . (32)

While the mathematics of this is quite simple, the implications are not as easy to grasp: what this means is
that we have two functions, one purely of x and another purely of another independent variable t that are
always equal. In other words, for separable solutions, these two quantities must independently be equal
to a constant. In other words, we need:

1

T (t )

d2T

dt 2 = constant,

v2
p

X (x)

d2X

dx2 = constant.

(33)

Are there any restrictions on this constant? Indeed there are! Look at the time equation above: you should
recognise that it looks almost exactly like the equation for simple harmonic motion, provided the constant
be negative.

9
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Exercise: Show what happens to (say) the time equation when the constant is:

(a) zero,

(b) positive,

(c) negative,

and explain which of the solutions would give oscillatory behaviour.

Thus, since we require our solution to be oscillatory in time, we can establish that the constant has to be
negative, and so we call it −ω2. In this case, we can instantly write out the solutions to the equations given
above in terms of ω and k =ω/vp :

X (x) = A cos(kx)+B sin(kx),

T (t ) =C cos(ωt )+D sin(ωt ).
(34)

The separable solutions to the wave equation can thus be written as products of sines and cosines! We
should be happy about this. Remember why we did all of this: partial differential equation are notoriously
hard to solve, and therefore we did not attempt to find the general solution to the wave equation. Instead,
we looked for a class of solutions that had the time and space components separated. It then turned out
that these solutions happened to be sines and cosines. Now, from Fourier analysis, we know that any
periodic function can be represented as a linear sum of sines and cosines. Therefore, it would appear that
we can construct any general solution using a linear combination of these separable solutions. This is a
deep result, spend some time understanding it before we move on to two applications.

3.2 Waves on a string with fixed ends

Let us start off by imposing a constraint on our string: it is fixed firmly at both ends, meaning that the
points labelled by x = 0 and x = L simply do not move, ever. This is called a boundary condition, as
it specifies the value of the solution at some boundary, and thereby imposes a condition on the solu-
tions.6

The general solution to the wave equation, which we will from now on denote as u(x, t ) must thus satisfy
the following conditions:

u(0, t ) = 0, and u(L, t ) = 0. (35)

Now, we have guessed that the separable solutions can be used to get the general solution, and so it makes
sense to see which – if any – of the separable solutions satisfy these conditions.

Given that these are conditions on the position for all time, these translate into conditions on the
X (x) function, since they must be true at all values of t and must therefore be true independently
of T (t ).

Let us look at each boundary condition at a time:

u(0, t ) = 0 =⇒ X (0) = 0 =⇒ A = 0. (36)

6This is somewhat similar to, though quite different in many ways from the initial conditions you are used to seeing in Newtonian
mechanics: solving Newton’s laws gives you a family of solutions, and you pick out only those that start off with some initial position
and some initial velocity.
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Thus, our solutions cannot have any terms that look like cos(kx), since these functions are never zero
when x = 0.

Let us now look at the other boundary:

u(L, t ) = 0 =⇒ X (L) = 0 =⇒ B sin(kL) = 0. (37)

Now, B cannot be zero, since that would just give us the trivial solution X (x) = 0 which would be terribly
boring. As a result, only certain values of k must be allowed, so as to ensure that kL = nπ, which in turn
would ensure that the solutions always ended up at 0 when x = L.7 As a result, we now see that there
are only specific values of kn = nπ/L which satisfy the boundary conditions. Remember that the relation
between ω and k8 implies that only certain values of ω ≡ ωn are allowed as well. Therefore, the solution
X (x) is given by:

X (x) = B sin
(nπx

L

)
. (38)

3.2.1 The plucked string

So far, we have imposed no condition on the function T (t ). However, we could do that as well. Suppose we
had a situation where the string was plucked, meaning that it initially starts off with no velocity, and only
an initial displacement. The more astute of you will probably see this as another “boundary” condition,
except that it is a boundary condition in time. In other words, we are stating that at the initial instant
of time t = 0, the string has no velocity. But how does one define the velocity of a string, you ask? It’s
simple: remember that we have so far been considering our string to be a set of coupled oscillators whose
y−displacement denotes the degree of their oscillation, which – in the continuum case – we represent as
the function u(x, t ). By the same token, it would only make sense to denote the velocity of the string by
the rate of change of u with respect to time, for each label x. In other words, the velocity of the string at
any given point x is given by

v(x) = ∂u

∂t
(x, t ).

Using this simple definition we see that the condition that the string begin without any velocity means
that for every point, at t = 0, the string is at rest.

Exercise: Convince yourself that this means that

∂u

∂t
(x,0) = 0. (39)

Of course, just as before, we can argue that since this is a condition that only affect the string at one instant
of time, and for all possible points x equally, it must impose a condition only on the corresponding “time”
function T (t ). As a result, we can say that:

∂u

∂t
(x,0) = 0 =⇒ T ′(0) = 0 =⇒ Bωn = 0. (40)

As we have established thatωn 6= 0, the only possibility is that the string’s time-dependence must be purely
a cosine. In other words, the condition that the string start off as being plucked leads us to say that the

7This is very similar to the way that we guessed the solutions for the finite number of normal modes.
8The “dispersion” relation ω2 = k2v2

p
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separable solutions must be of the form:

fn(x, t ) = An sin(kn x)cos(ωn t ) kn = nπ

L
, ωn = kn vp . (41)

Notice how we now introduce a subscript for the coefficient An , preempting the fact that each “standing
wave” could have its own amplitude. Now, we are almost done with solving the problem: the general
solution can be written as a linear sum of all the separable solutions, given that they now satisfy all the
boundary conditions (in space and time) described above. And so we must have that:

u(x, t ) =
∞∑

n=1
An sin

(nπx

L

)
cos

(
vp nπt

L

)
. (42)

All that remains now is to find the amplitudes of each of the separable solutions (henceforth called “modes”),
which we can find from the initial conditions (i.e., how the string was plucked at t = 0.)

(a) Displacement profile of the string (b) Successive approximations using Fourier expansion

Figure 1: A string plucked at some distance a = L/5, with L = 1. The displacement profile on either side of
x = a is linear (left). This function can be approximated by a finite number of terms from the Fourier ex-
pansion (right). The approximation improves as N increases, but even N = 10 is a faithful approximation.

Exercise: Consider a string plucked using the profile described above, with and a = L/5, and h = 1.
Show that the initial displacement profile of the string can be written as:

u(x,0) =


(

h

a

)
x x ≤ a,(

h

L−a

)
(L−x) x > a.

(43)

Exercise: Use this to find the coefficients An , and show that they are given by

An = 2hL2

a(L−a)

(
1

n2π2

)
sin

(nπa

L

)
. (44)

Exercise: Using the above result, argue that if L/a = m, an integer, then Am = 0, as is A2m , A3m . . .

12
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3.2.2 The struck string

We could also alter the above problem slightly to look for solutions where the string is initially at rest,
but given some initial velocity profile (instead of a displacement profile). You should be able to convince
yourself that in this case, the “boundary” conditions are:

u(0, t ) = 0,

u(L, t ) = 0,

u(x,0) = 0,

(45)

and the initial conditions tell us that the initial velocity is given by some velocity profile v(x). That means
that:

∂u

∂t
(x, y) = v(x). (46)

Consider a simple case where the velocity profile is given by the same function as before (Equation (43)),
where h represents the maximum velocity, and a represents the position of this maximum.9

It turns out that we have very little in the way of calculations to do to solve this problem. We begin by
realising that the two boundary conditions in space remain the same, and therefore so does our condition
for X (x). On the other hand, the “boundary” condition at t = 0 is different.

Exercise: Show that the fact that the string begins with no displacement profile means that

T (t ) ∼ sin(ωn t ) . (47)

Therefore, the general solution for a struck string is

u(x, t ) =
∞∑

n=1
Bn sin(kn x)sin(ωn t ) . (48)

Clearly, at t = 0, the displacement is zero, as expected. We now need to compute Bn , which would com-
plete our calculations. We put in the initial conditions, which say that

∂u

∂t
(x,0) =

∞∑
n=1

Bnωn sin
(nπx

L

)
= f (x). (49)

Now, if we rename An = Bnωn (which we can do, since they’re all just numbers) we find that this is just the
same problem we just solved! And therefore, using Equation (44), we have:

Bn = An

ωn
=

(
L

vp nπ

)
× 2hL2

a(L−a)

(
1

n2π2

)
sin

(nπa

L

)
. (50)

9Such velocity profiles are not as unphysical as you might imagine, see Antoine Chaigne , “Reconstruction of piano hammer force
from string velocity”, The Journal of the Acoustical Society of America 140, 3504-3517 (2016). On a side-note, I just realised I was
actually taught by the author of this paper!
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3.3 A solved example

I had promised all of you that I would solve one complete initial conditon problem, chosen randomly,
from your last assignment. Here is my solution, along with an associated Jupyter Notebook. The initial
condition that was assigned to me is shown in Figure (2).

Figure 2: Initial condition for a plucked string: the profile follows a sine curve from 0 to L/2, after which it
is zero. The initial velocity profile is zero. The string has both ends fixed.

Given that the string has both ends fixed, and that the initial condition is in displacement and not in time,
we can say that the general solution can be written as a linear sum of standing waves of the form:10

u(x, t ) =
∞∑

n=1
An sin

(nπx

L

)
cos

(
vp nπt

L

)
. (51)

The initial displacement profile of the string can be written as

f (x) =
h sin

(
2πx

L

)
0 < x ≤ L/2,

0 otherwise.
(52)

We would thus like to compute coefficients An such that

u(x,0) = f (x) =⇒
∞∑

n=1
An sin

(nπx

L

)
= f (x). (53)

Using the orthogonality of the sines on the interval (0,L) that we saw earlier, we can say that11

An = 2

L

∫ L

0
dx f (x)sin

(nπx

L

)
. (54)

Given the fact that our function is only non-zero in the interval 0 to L/2, this integral reduces to:

An = 2

L

∫ L/2

0
dx h sin

(
2πx

L

)
sin

(nπx

L

)
,

= 2h

L

∫ L/2

0
dx

1

2

(
cos

(
(n −2)πx

L

)
−cos

(
(n +2)πx

L

)) (55)

We now have two integrals of the form:

I (m) = 1

L

∫ L/2

0
dx cos

(mπx

L

)
, m ∈Z, (56)

10When you write your assignment, you should start from the general solution to the wave equation and shown how this comes
about, like I did in the previous section.

11Again, this will have to be proved by you when you write your answer.
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so let us solve this for a general m. Using the fact that the integral of a cosine is a sine, we have

I (m) = 1

L

L

mπ
sin

(mπx

L

)∣∣∣∣x=L/2

x=0
= 1

mπ
sin

(mπ

2

)
. (57)

Since we’ve seen that our integral for An can be written as

An = h

(
I (n −2)− I (n +2)

)
, (58)

we can see that

An = h

(n −2)π
sin

(
(n −2)π

2

)
− h

(n +2)π
sin

(
(n +2)π

2

)
. (59)

Here we notice something interesting: if n is an even number, then so is n −2 and n +2, and so we can
write each of the sine terms as ∼ sin

(
p±π

)
, where p± = (n ± 2)/2 is an integer. As a result, all the terms

with n being even are automatically zero! Well, nearly all of them. n = 2 is a special case. Using L’Hôpital’s
rule, you should be able to show that A2 = 1/2. Furthermore, the terms in the sine function are of the
form sin(x ±π) =−sin(x), and so we can compute the final coefficients shown below. Figure (3) shows the
results when t = 0.

An =− h

(n −2)π
sin

(nπ

2

)
+ h

(n +2)π
sin

(nπ

2

)
=−h

π

(
4

n2 −4

)
sin

(nπ

2

) (60)

Figure 3: A plucked string with a different initial displacement profile from before: the string follows a
sinusoidal function until x = L/2, after which it remains at equilibrium. As before, more Fourier terms
leads to a better approximation of the initial function. Even when N = 30 (which is actually only 16 non-
zero terms, as argued above) the approximation is quite good.

The code containing the animation of this string for all times t > 0 is attached as a Jupyter Notebook.
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