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1 The complex Fourier Series representation

From our earlier classes, you should remember that if a function is periodic over some period T0, i.e.
f (t +T0) = f (t ), then f (t ) could equivalently be represented by an infinite series of sines and cosines,
called a Fourier Series:

f (t ) = a0

2
+

∞∑
n=1

(
an cos

(
2πn

t

T0

)
+bn sin

(
2πn

t

T0

))
(1)

An equivalent, though somewhat neater, way to write this series is to use the fact that the sines and cosines
can be expressed in terms of complex exponentials.

Exercise: Show that you can write

f (t ) =
∞∑

n=−∞
cne−i nω0t , (2)

where ω0 = 2π/T0, and cn is some coefficient you need to find in terms of an and bn .

Exercise: Show that c−n = c⋆n .

Exercise: Can you now see why in the original definition of the Fourier Series the constant term
had an extra factor of 1/2 that the other terms did not have?

Notice how all the information contained in the function f (t ), or rather, all the information required to
reconstruct the function f (t ) is present in the infinite (but countably infinite) set of coefficients {cn}. The
components cn tell us how much of the different frequencies (all of which are some integral multiple of
ω0) are present in the function f (t ). Thus, we can say that

f (t ) −→ contains information in the “time” domain,

cn −→ contains information in the “frequency” domain,

The coefficients cn can be obtained from the function f (t ) by performing the integral:

cn = 1

T0

∫ T0/2

−T0/2
f (t )e i nω0t dt . (3)

These are obtained in more or less exactly the same way that the coefficients an and bn are obtained in
the usual definition of the Fourier Series.
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Exercise: Show that the functions e i nω0t are orthogonal over a period of T0 = 2π/ω0. i.e., show
that: ∫ T0/2

−T0/2
e i mω0t e i nω0t dt = T0 δmn . (4)

2 Extending our definition to non-periodic functions

Notice how the above definition only works for periodic functions. Suppose, instead, that we don’t have
a periodic function, but we are only interested in the function between two points, say, (−T0/2,T0/2). We
can use a trick: the idea is that we imagine that the function is periodic, with period T0. Notice how it’s
not the same function, but both functions overlap over the interval of interest. We have thus constructed
a periodic function over all space, but we’re only interested in a small part, from −T0/2 to T0/2. We can
of course get the Fourier components for this function, provided we understand that they are only to be
used to approximate the function f (t ) in the appropriate regime.

Figure 1: Two functions that are not equal in general, but are equal in an interval of width T0.

Thus, over the interval T0, we can express f (t ) as a sum over sinusoidal functions with frequencies that
are integral multiples of a smallest frequency ω0, when

ω0 = 2π

T0
. (5)

Of course, since the function is inherently non-periodic, there is nothing special about the value of T0 that
we chose. We could always have defined a different interval (say, T1 > T0). In this way, we could re-express
f (t ) between −T1/2 and T1/2 as a combination of sinusoidal functions with a smaller fundamental fre-
quency,

ω1 = 2π

T1
. (6)

But can we use this technique to completely describe an arbitrarily long signal, i.e. a purely non-periodic
function. We can think of such a function as have a period of T0 → ∞. We will need to take this limit
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very carefully, to remain consistent. First, we notice that as T0 increases, the fundamental frequency
ω0 decreases. Indeed, this is a reflection of the fact that the spacing between the different frequencies
required to describe the function goes to zero. Therefore, the discrete variable ωn = nω0 now goes to a
continuous variable, ω, since the separation between subsequent values goes to zero. Furthermore, since
the frequencies ωn are now continuous, the discrete Fourier coefficients must also be continuous. Thus,
to summarise, in this limit:

T0 →∞ (an aperiodic function has an infinite period)

∆ω≡ω0 → dω (an infinitesimal quantity)

n∆ω→ω (a continuous variable)

cn → c(ω) (a function of a continuous variable)

Given our discussion above, we would expect that the discrete Fourier sum must now be replaced by an
integral. We can do this by writing f (t ) as a limit of a sum, and taking the limit T0 →∞, i.e.

f (t ) =
∞∑

n=−∞
cne−i nω0t = 1

∆ω

∞∑
n=−∞

cne−i nω0t∆ω.

Using the above scheme, we now have two equations for f (t ) and c(ω) that look more symmetric:

f (t ) = 1

∆ω

∞∑
n=−∞

cne−i nω0t∆ω
T0→∞−−−−→ 1

∆ω

∫ ∞

−∞
c(ω)e−iωt dω,

c(ω) = 1

T0

∫ T0/2

−T0/2
f (t )e i nω0t dt

T0→∞−−−−→ 1

T0

∫ ∞

−∞
f (t )e iωt dt .

(7)

However, the astute among you would be right to be concerned: the above equations do look a little bogus;
the biggest problems with them have been highlighted in red: the constant terms in front of the integrals
both behave undesirably as T0 →∞. In the first case, ∆ω→ 0, as so the constant term blows up, while in
the second case, the 1/T0 term takes the right-hand-side to 0. So while this idea nearly seems to work, it
doesn’t quite work yet. The trick is to realise that while ∆ω and T0 go to 0 and ∞ respectively, they do so at
the same rate, such that T0 ×∆ω= 2π. This seems to indicate that c(ω) might not be the ideal function to
work with when ∆ω→ 0. Thus, the solution is to redefine things and work instead with

F (ω) =
∫ ∞

−∞
f (t )e iωt dt . (8)

Exercise: Using the above definition, show that f (t ) can be written in terms of F (ω) as

f (t ) = 1

2π

∫ ∞

−∞
F (ω)e−iωt dω. (9)

As you can see – using F (ω) – all the undesirable behaviour of both functions seem to have been dealt with.
The function F (ω) is called the Fourier Transform of f (t ): it takes f (t ) – a function in the “time” domain
– and produces a function in the frequency domain ω. You should, in a coarse sense, consider F (ω) to
play the same role that the Fourier Coefficients did in the case of periodic functions: it is a measure of
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“how much” of the frequency ω the function is composed of. Similarly, f (t ) is called the inverse Fourier
Transform of F (ω).

Now, for all of this to make any sense at all, we require that the inverse Fourier Transform of the Fourier
Transform of f (t ) just give back f (t ) again, since this is just a basic consistency requirement. Thus, we
require

f (t ) = 1

2π

∫ ∞

−∞
dωe iωt

∫ ∞

−∞
dt ′ f (t ′)e−iωt ′︸ ︷︷ ︸

F (ω)

. (10)

The above condition is known as the Fourier Integral Theorem. We can prove it as follows: we first rear-
range the terms in this integral (since we’re assuming everything converges, and so on1) and get

f (t ) = 1

2π

∫ ∞

−∞
dt ′ f (t ′)

∫ ∞

−∞
dω e iω(t−t ′). (11)

Now, we perform the second integral on the right-hand side. In order to do this, we will need a result that
you will prove in this week’s assignment:∫ ∞

−∞
dω e iω(t−t ′) = 2πδ(t − t ′), (12)

where δ(τ) is the Dirac Delta function. As a result, we can show that Equation (11) is indeed consistent,
since

f (t ) = 1

2π

∫ ∞

−∞
dt ′ f (t ′)×2πδ(t − t ′) = f (t ). (13)

3 Problems:

(a) Prove the Fourier Shift Theorem, i.e. if we denote the Fourier Transform of a function f (t ) byF
[

f (t )
]

(ω),

prove that

F
[

f (t − t0)
]

(ω) = e iωt0F
[

f (t − t0)
]

(ω) = e iωt0 F (ω). (14)

(b) Prove the Convolution Theorem. Defining the convolution of two functions f (t ) and g (t ) as being

f (t )∗ g (t ) =
∫ ∞

−∞
f (t )g (u − t )dt , (15)

show that:
F

[
f (t )∗ g (t )

]
= F (ω)G(ω). (16)

(c) Prove Parseval’s Theorem for Fourier Transforms:∫ ∞

−∞

∣∣ f (t )
∣∣2dt =

∫ ∞

−∞
|F (ω)|2dω (17)

(d) Prove the Differentiation Theorem for the Fourier Transform

F
[

f ′(t )
]
=−iωF (ω), (18)

and generalise this to find F
[

f (n)(t )
]

in terms of F (ω).
1The more mathematically minded of you would be right to be wary of the reckless abandon with which this was done. I’m sure

there are many mathematical subtleties that I am sweeping under the rug, but they are not pertinent to our discussion here.
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