Quiz 2

NAME:

Philip Cherian

February 1, 2024

(a) Consider a gaseous system that is taken along the following cycle from $A \to B \to A$: it is first taken from $A \to B$ along a parabola and is then brought back from $B \to A$ at constant pressure. This process is shown in Figure (1). For convenience, the internal energy at the two states (U_A and U_B) are given to you, and the equation of the parabola (in units of MPa and m^3) is $P = 0.1 + 10^3 (V - 0.02)^2$.

Figure 1: A thermodynamic system is taken along a process $A \rightarrow B \rightarrow A$. Note that 1MPa = 10^6 Pa.

Along each of the arms, compute (i) the work done, and (ii) the heat transferred. Indicate whether the heat is transferred into or out of the system. [7]

 $(b) \ \ Suppose\ you\ are\ given\ the\ infinitesimal\ form\ of\ the\ First\ Law\ of\ Thermodynamics$

$$dU = TdS - PdV + \mu dN. (1)$$

Use this to arrive at equations for T, P, and μ in terms of partial derivatives of U. Use your results to derive the three equations of state for the fundamental relation given below: [3]

$$U = k \left(\frac{S^3}{NV} \right). \tag{2}$$