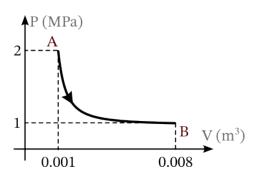
NAME :			

PHY2610 - Thermal Physics

Spring 2024

Quiz 3

Philip Cherian


February 6, 2024

(a) Consider two subsystems separated by an impermeable and immovable wall that only transfers heat. The energies of each system (U_1 and U_2 respectively) are allowed to change, but the total energy $U = U_1 + U_2$ is conserved.

Using the fact that the entropy is extremised at thermal equilibrium (i.e. dS = 0), show that at equilibrium the temperatures of both subsystems will be the same, i.e. that $T_1 = T_2$. [3]

Hint: Remember that the total energy is conserved!

(b) Consider a gaseous system taken from A to B along a curve P^3V = constant, as shown in Figure (1). The internal energy of this system is given by U = 2.5PV - 5kJ. Find (i) the change in the internal energy, (ii) the work done, and (iii) the heat transferred. [6]

Figure 1: A thermodynamic system is taken from $A \rightarrow B$ along $P^3V = \text{constant}$. Note that 1MPa = 10^6 Pa.