DS 3: Linear Vector Spaces

Philip Cherian September 11, 2019

1 Commuting Operators and Simultaneous Eigenstates

(a) Consider the following matrices:

$$\hat{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \hat{B} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \tag{1}$$

- (i) Show that \hat{A} and \hat{B} commute.
- (ii) Find the eigenvalues and corresponding (normalised) eigenvectors of the matrix \hat{A} .
- (iii) Show that these eigenvectors are also eigenvectors of \hat{B} . What are their corresponding eigenvalues?
- (b) Consider the following matrices:

$$\hat{P} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \hat{Q} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \tag{2}$$

- (i) Find the eigenvalues and eigenvectors of \hat{P} .
- (ii) Show that \hat{P} has a degenerate subspace.
- (iii) Does \hat{Q} resolve this degeneracy?

2 Two-dimensional vector spaces

Suppose we have a two dimensional Hilbert space with basis $|1\rangle$ and $|2\rangle$, where $\langle 1|2\rangle = \langle 2|1\rangle = 0$ and $\langle 1|1\rangle = 1 = \langle 2|2\rangle$. Imagine an operator \hat{A} , such that $\hat{A}|1\rangle = -i|2\rangle$ and $\hat{A}|2\rangle = i|1\rangle$. Suppose now we have two states:

$$|\psi\rangle = |1\rangle + 2|2\rangle$$
$$|\phi\rangle = |1\rangle + i|2\rangle$$

- (a) Calculate $\langle \phi | \psi \rangle$ directly.
- (b) Represent the states as column vectors $\underline{\psi}$ and ϕ , and verify that $\langle \phi | \psi \rangle = \underline{\phi}^{\dagger} \underline{\psi}$.

- (c) Calculate $\hat{A} \left| \psi \right\rangle$ and $\hat{A} \left| \phi \right\rangle$ directly.
- (d) Do the same thing with matrices.
- (e) Calculate $\langle \phi | \hat{A} | \psi \rangle$ and $\langle \psi | \hat{A} | \phi \rangle$ directly and using matrices.
- (f) If

$$|a\rangle = \frac{|1\rangle + |2\rangle}{\sqrt{2}}$$
$$|b\rangle = \frac{|1\rangle - |2\rangle}{\sqrt{2}}$$

Verify that this is an orthonormal basis.

(g) Find, in this new basis, $\underline{\psi}',\underline{\phi}',\hat{A}'$, and verify that

$$\underline{\psi'^{\dagger}}\underline{\phi'} = \underline{\psi}^{\dagger}\underline{\phi}$$

$$\underline{\phi'^{\dagger}}\underline{\psi'} = \underline{\phi}^{\dagger}\underline{\psi}$$

$$\underline{\psi'^{\dagger}}\underline{A'}\underline{\phi'} = \underline{\psi}^{\dagger}\underline{A}\underline{\phi}$$