DS 5: The Schrodinger Equation

Philip Cherian September 25, 2019

1 Position and momentum as differential operators

In class, you should have seen that the states of definite position $|x\rangle$ can be represented by δ -functions in position space. From this, you could show that

$$\langle x | p \rangle = \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}} \tag{1}$$

You have seen that the action of the position operator (\hat{x}) on a state is equivalent to multiplying the (position) wavefunction by x. In class, you saw that the action of the momentum operator (\hat{p}) on a state is equivalent to acting the differential operator $-i\hbar\hat{D}$ on the (position) wavefunction. i.e.

$$\langle x | \hat{p} | \psi \rangle = \frac{\hbar}{i} \frac{\mathrm{d}\psi(x)}{\mathrm{d}x}$$

(a) Consider the action of \hat{p} on an arbitrary state $|\phi\rangle$. What is the equivalent wavefunction in **momentum** space? i.e. what is

$$\langle p | \hat{p} | \varphi \rangle = ?$$

- (b) Now consider the action of the position operator \hat{x} on an arbitrary state $|\varphi\rangle$. What is the equivalent wavefunction in **momentum** space?
- (c) Interpret the following quantities physically, and evaluate them first in terms of $\varphi(x)$ and $\varphi(x)$, and then in terms of $\tilde{\varphi}(p)$ and $\tilde{\varphi}(p)$.

$$\langle \varphi | \hat{x} | \phi \rangle = ?$$

 $\langle \varphi | \hat{p} | \phi \rangle = ?$

2 Time-evolution of states of definite position

Consider a system prepared initially in a state of definite position $|x\rangle$. Let us now ask ourselves how the system behaves as time passes. You have seen that the time-evolution of a quantum system depends on the Hamiltonian \hat{H} of the system. If the system is prepared in an eigenstate of the Hamiltonian, then its state does not change with the passage of time.

 $^{^{1}\}mbox{Except},$ perhaps, for an overall phase factor which is generally not physically relevant.

- (a) If a system is prepared in a state $|x\rangle$, will it continue to remain in that same state, or will it change? Explain your answer.
- (b) Let us now try to see if your answer is correct. Convince yourself that if a system is initially prepared in some state $|\psi\rangle$ at t=0, and you wish to know the wavefunction at some later time t, then the wavefunction

$$\psi(x,t) = \langle x | \psi(t) \rangle = \langle x | e^{-i\frac{\hat{H}}{\hbar}t} | \psi(0) \rangle$$

(c) Now, convince yourself that – if the state is initially a state of definite position (say $|x'\rangle$, then you are interested in finding

$$\psi(x,t) = \left\langle x \middle| e^{-i\frac{\hat{H}}{\hbar}t} \middle| x' \right\rangle$$

(d) Compute the above quantity, and show that

$$\psi(x,t) = \sqrt{\frac{m}{2\pi i\hbar t}} \exp\left\{\frac{i m (x - x')^2}{2\hbar t}\right\}$$

- (e) Compute $|\psi(x,t)|^2$. Do you see a problem with this? Interpret your result physically. Is this what you expected to happen?
- (f) It turns out that this initial condition is probably not physical. A more "realistic" initial condition would be to imagine a highly peaked Gaussian distribution in *x*, and allow *that* to evolve in time, as you will do in Assignment 2.
- (g) Repeat the above calculation if the system was initially prepared in a state of definite momentum $|p\rangle$. Does *this* agree with what you would expect?²

3 Recognising and old friend

This should surprise you. Perform the following operations, and be stunned:

- (a) Write out the Schrodinger Equation.
- (b) Write out the complex-conjugate of the Schrodinger Equation. (Convince yourself hopefully quickly that these are not two *different* equations).
- (c) Multiply the first by $\psi^*(x)$ and the second by $\psi(x)$ and subtract them. Show that you get:

$$i\hbar \frac{\partial \psi^* \psi}{\partial t} = -\frac{\hbar^2}{2m} \left(\psi^* \frac{\partial^2 \psi}{\partial x^2} - \psi \frac{\partial^2 \psi^*}{\partial x^2} \right)$$
$$= -\frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right)$$

²Can you draw a parallel with Classical Mechanics here?

 $\label{eq:continuous} \mbox{(d) Rewrite the equation in terms of two new quantities:}$

$$\rho = \psi^* \psi$$

$$j = \frac{\hbar}{2im} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right)$$

(e) Generalise – with reckless abandon – to three dimensions, and recognise an old friend.