DS 7: Wave Mechanics

Philip Cherian October 16, 2019

1 The Quantum Bouncer

Consider a quantum particle experiencing a constant force F in (say) the x-direction.

- (a) Write out the time-independent Schrodinger Equation satisfied by this particle.
- (b) Suppose $\psi_0(x)$ is an allowed energy level, with corresponding eigenvalue E_0 . Show that if *one* value of E_0 is allowed, *any* other E (positive or negative) is allowed. How are their eigenstates related?
- (c) Choose a convenient value of E_0 , and solve the equation.

2 The Harmonic Oscillator

- (a) A harmonic oscillator is in a state such that a measurement of the energy yields either $(1/2)\hbar\omega$ or $(3/2)\hbar\omega$ with equal probability. What is the largest possible value of $\langle p \rangle$ in such a state? If it assumes this maximal value at t=0, what is $\Psi(x,t)$?
- (b) Let us now relax the condition of the probabilities being equal. Suppose the state with energy $(1/2)\hbar\omega$ has a probability amplitude of $\cos\theta$. In this case, deduce $\langle E\rangle$, $\langle E^2\rangle$, and ΔE . Now find $\langle x\rangle$ and $\langle x^2\rangle$. With this result, choosing appropriate values for θ and t, show that you can reproduce the result for $\langle p\rangle$ in the previous part.
- (c) Show that for a harmonic oscillator, the expectation value of position $\langle x \rangle$ satisfies the classical equation.

3 The Virial Theorem

Consider a one-dimensional system with the Hamiltonian $\hat{H} = \hat{p}^2/2m + V(\hat{x})$, where $V(x) = \lambda x^n$.

- (a) Calculate the commutator $[\hat{H}, \hat{x}\hat{p}]$.
- (b) By taking the expectation value of this commutator, show that for any eigenstate of \hat{H} , one has the relation:

$$2\langle T\rangle = n\langle V\rangle$$
,

where $\hat{T} \equiv \hat{p}^2/2m$ is the kinetic energy operator. Check this relation on the harmonic oscillator.

(c) Generalise this result to three dimensions by calculating $[\hat{H}, \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}]$ and considering the potential $V(\mathbf{r})$ to be a **homogeneous function** of the variables x, y, and z, of degree n.

Note: A homogeneous function of degree n satisfies

$$V(\alpha x, \alpha y, \alpha z) = \alpha^n V(x, y, z)$$

$$\mathbf{r} \cdot \nabla V = nV$$

(d) Show that, for an arbitrary potential V(r), one has the general relation

$$2\langle T\rangle = \left\langle r \frac{\partial V}{\partial r} \right\rangle.$$