DS 14: Spin and Symmetries

Philip Cherian November 27, 2019

1 Spinors

Consider a particle prepared in the spin state

$$\chi = A \begin{pmatrix} 1 - 2i \\ 2 \end{pmatrix}$$

- (a) If you measure S_z , what values could you get, and what is the probability of each? What is the expectation value of S_z ?
- (b) Answer the same question for S_x and S_y .
- (c) Show that $\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2 = (\hbar/2)^2$. What is $\langle S_x^2 \rangle + \langle S_y^2 \rangle + \langle S_z^2 \rangle$?

2 Lattice Translations as a Discrete Symmetry

Consider a periodic potential in one dimension, where $V(x \pm a) = V(x)$, as shown in Figure (1a). This could be a model of electrons in a chain of regularly spaced positive ions.

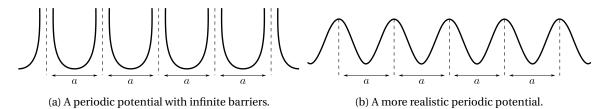


Figure 1: Periodic potentials with discrete translation invariance.

A state in which the particle is completely localised in one of the lattice sites (say the nth site) is a good candidate for the ground state. Let us denote this state by $|n\rangle$, and say that this is an energy eigenstate with eigenvalue E_0 , i.e. $H|n\rangle = E_0|n\rangle$.

(a) Show that in general the Hamiltonian is *not* invariant under a translation represented by T(l) for arbitrary l, where T(l) has the property

 $^{^{1}}$ Of course, we could have chosen any one of these sites, and so there are an infinite number of ground states, all with energy E_{0} .

$$T^{\dagger}(l)xT(l) = x + l, \qquad T(l)|x\rangle = |x + l\rangle.$$

Show, however, that the Hamiltonian is invariant under translations when l coincides with the lattice spacing a:

$$T^{\dagger}(a)HT(a) = H \implies [H, T(a)] = 0.$$

(b) Show that $|n\rangle$ is not an eigenstate of T(a).

However, since H and T(a) commute, we must be able to find a simultaneous eigenbasis for both of them. Consider the linear combination

$$|\theta\rangle \equiv \sum_{n=-\infty}^{\infty} e^{in\theta} |n\rangle$$

where θ is a real parameter $-\pi \le \theta \le \pi$.

(c) Show that $|\theta\rangle$ is a simultaneous eigenstate of H and T(a), and find their eigenvalues.

Let us move to a slightly more physical potential, such as one depicted in Figure (1b) where the barrier between two adjacent sites is not infinitely high. Just as before, we can construct a localised ket $|n\rangle$, such that $T(a)|n\rangle = |n+1\rangle$, but we would now expect some *leakage* into neighbouring sites due to quantum mechanical tunnelling. In other words, the wavefunction is not *completely* localised to a site, but has a tail extending into neighbouring sites.

Since there is some coupling between the states $|n\rangle$ and $|n\pm1\rangle$, we would expect some off-diagonal elements that connect immediate neighbours. We can thus say that

$$\langle n'|H|n\rangle \neq 0$$
 only if $n'=n$ or $n'=n\pm 1$

This is called the **tight-binding approximation**: we ignore all interactions except for those between neighbouring sites. In particular, we choose

$$\langle n|H|n\rangle=E_0$$

 $\langle n\pm 1|H|n\rangle=-\Delta$
 $\langle n'|H|n\rangle=0$ otherwise.

- (a) Show that $|n\rangle$ is no longer an eigenstate of the Hamiltonian.
- (b) Show, however, that $|\theta\rangle$ is still an energy eigenstate which now depends on the (real) parameter θ .
- (c) Show that when $\Delta = 0$ (the previous case), we have a degeneracy in energy eigenstates which is lifted as Δ becomes finite, forming a continuous energy *band* between $E_0 2\Delta$ and $E_0 + 2\Delta$.
- (a) Show that

$$\langle x - a | \theta \rangle = \langle x | \theta \rangle e^{-i\theta}$$

(b) Show, by explicit substitution, that any wavefunction that satisfies this equation can be written as

$$\langle x|\theta\rangle = e^{ikx}u_k(x),$$

where we have written $\theta = ka$, and the only condition on $u_k(x)$ is that it is a *periodic* function of x with period a.

This is a very important condition known as **Bloch's theorem**: The wavefunction of $|\theta\rangle$, which is an eigenstate of T(a), can be written as a plane wave e^{ikx} times a periodic function $u_k(x)$ with periodicity $a.^2$

²It turns out that this theorem holds true even if the tight-binding approximation breaks down.