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1 Spinors
Consider a particle prepared in the spin state
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(a) If you measure S;, what values could you get, and what is the probability of each? What is the
expectation value of S,?

(b) Answer the same question for Sy and S,,.
(©) Show that (S)% +(Sy)? +(S2)? = (1/2)2. What s (52) + (52} + ()2
2 Lattice Translations as a Discrete Symmetry

Consider a periodic potential in one dimension, where V (x+a) = V(x), as shown in Figure (12). This could
be a model of electrons in a chain of regularly spaced positive ions.
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(a) A periodic potential with infinite barriers. (b) A more realistic periodic potential.

Figure 1: Periodic potentials with discrete translation invariance.

A state in which the particle is completely localised in one of the lattice sites (say the nth site) is a good
candidate for the ground state. Let us denote this state by |n), and say that this is an energy eigenstate
with eigenvalue Ey, i.e. H|n) = Ey|n).

(a) Show that in general the Hamiltonian is not invariant under a translation represented by 7'(/) for
arbitrary [/, where T(I) has the property

lof course, we could have chosen any one of these sites, and so there are an infinite number of ground states, all with energy Eg.
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T'OxT =x+1, TWD)Ix)=|x+1).

Show, however, that the Hamiltonian is invariant under translations when [ coincides with the lat-
tice spacing a:

T'(@HT@=H = [HT(@)]=0.

(b) Show that |n) is not an eigenstate of T'(a).

However, since H and T(a) commute, we must be able to find a simultaneous eigenbasis for both
of them. Consider the linear combination

=Y e

n=-—00

where 0 is a real parameter -7 <0 < 7.
(c) Show that |0) is a simultaneous eigenstate of H and T (a), and find their eigenvalues.

Let us move to a slightly more physical potential, such as one depicted in Figure (1b) where the barrier
between two adjacent sites is not infinitely high. Just as before, we can construct a localised ket |n), such
that T'(a) |n) = [n+ 1), but we would now expect some leakage into neighbouring sites due to quantum
mechanical tunnelling. In other words, the wavefunction is not completely localised to a site, but has a
tail extending into neighbouring sites.

Since there is some coupling between the states |n) and |n + 1), we would expect some off-diagonal ele-

ments that connect immediate neighbours. We can thus say that

/

(n'|H|n)#0 onlyifn'=n or n'=nz+l

This is called the tight-binding approximation: we ignore all interactions except for those between neigh-
bouring sites. In particular, we choose

(n|H|n) = Ey
(nt1|H|n)=-A
(n'|H|n)=0 otherwise.
(a) Show that |n) is no longer an eigenstate of the Hamiltonian.

(b) Show, however, that |0) is still an energy eigenstate which now depends on the (real) parameter 6.

(c) Show thatwhen A = 0 (the previous case), we have a degeneracy in energy eigenstates which is lifted
as A becomes finite, forming a continuous energy band between Ep —2A and Ej + 2A.

(a) Show that

(x—alf) = (x|0) e
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(b) Show, by explicit substitution, that any wavefunction that satisfies this equation can be written as

(x10) = e uy(x),

where we have written 6 = ka, and the only condition on u(x) is that it is a periodic function of x
with period a.

This is a very important condition known as Bloch’s theorem: The wavefunction of |0), which is an
eigenstate of T'(a), can be written as a plane wave e'** times a periodic function u(x) with periodicity
a.

2]t turns out that this theorem holds true even if the tight-binding approximation breaks down.
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