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In this computational exercise, you will learn to write an efficient Monte Carlo procedure for simulating
systems at a given fixed energy E . Consider an isolated ideal gas of N particles of unit mass whose energy
is given by
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and imagine that we want to study the thermodynamic state of this system at equilibrium. One way to
do this would be to find Ω(E) by brute force, but this is very inefficient and not practical even for small
N .

An efficient method to do this is to slightly relax the energy conservation constraint. Let us assume that
we add an extra degree of freedom to our gas. For historical reasons, this degree of freedom is called a
demon. Since the demon is only one degree of freedom and a gas typically has N ≫ 1, it can be thought of
as a very small perturbation to the system. The role of the demon then is to act as a reservoir of energy as it
attempts to change the state of the system. The total energy E = Es +Ed remains unchanged. The demon
initially has Ed = 0. It then hops from particle to particle, and tries to change the particle’s velocity. If its
desired change lowers the energy of the system, the excess energy is given to the demon. If the desired
change raises the energy of the system, the demon gives the required energy to the system, provided that
it has enough energy to give. If not, it moves on and tries again with the next particle. The only constraint
on this system is that the demon cannot have negative energy.

The algorithm is thus as follows:

• Choose a particle of the gas at random and make a trial change to its velocity. You can define a
maximum velocity change ∆vmax and choose values between −∆vmax and +∆vmax.

• Compute ∆E , the change in the energy of the system due to this trial change.

• If ∆E ≤ 0, the trial configuration is always accepted and the energy is given to the demon, i.e.

Ed −→ Ed +|∆E |.

• On the other hand, if ∆E > 0, the trial is only accepted if the demon can provide the energy needed
for this change, i.e. if Ed ≥∆E . If the demon has enough energy to give, its energy is then changed
to

Ed −→ Ed −|∆E |.

• This entire process is repeated N times. This constitutes one Monte-Carlo sweep.

• After a sufficient number of such sweeps, the demon and the system will agree on their respective
average energies. Once this has happened, average over the stabilised values to get 〈Es〉 and 〈Ed 〉.
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(a) In the code file provided, use the algorithm given above to complete the oneMCS function and thus
simulate one Monte-Carlo sweep. [4]

(b) Let N = 100 and take Es = 15 and Es = 25, and give all particles the same initial velocity. Complete
the simulate function which runs n_mcsweeps Monte-Carlo sweeps of the system and returns the
system energy and the demon energy as a function of the sweep number. By plotting 〈Ed 〉 or 〈Es〉
as function of n_mcsweeps, estimate roughly by when equilibrium has been reached, and calculate
both 〈Es〉 and 〈Ed 〉 once this happens for both Es = 15 and 25. Obtain an approximate relation
between the mean demon energy and the mean system energy per particle. [2]

(c) We will now explore why we can consider the demon to be an ideal thermometer. An ideal ther-
mometer is one that does not affect the system of interest. Since the demon is a perturbation of
order 1/N , it satisfies this condition when N ≫ 1. It exchanges energy with the system, but does not
change its own energy very much.

As we are working with the microcanonical ensemble where all states with some energy E are equally
likely, show that the probability that the demon has some energy Ed is given by

P (Ed ) ∝Ωsys(E −Ed )×Ωdem(Ed ).

Since the demon is only one degree of freedom, it has only one state for each Ed , and soΩdem(Ed ) = 1.

Writing
Ω(E −Ed ) = eS(E−Ed ),

and using the definition of temperature you have seen in class as
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show that you can write
P (Ed ) ∝ e−Ed /T .

Find the constant of proportionality, and show that 〈Ed 〉 = T . [2]

(d) For the values of Es in part (b), plot a histogram of the demon energy once equilibrium has been
reached. Compare it to the analytical result in part (c). Use this in the approximate result you ob-
tained in part (b) to obtain a relation between the average energy of the system and the temperature.
How does your result compare with the relation given for a 1D gas in your thermodynamics course,
Es = 1

2 N T ? Try to generalise your code to 2 and 3 dimensions. [2]
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