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In this assignment’s computational exercise we will develop a simple molecular dynamics program to sim-
ulate a two-dimensional system of particles interacting through a “realistic” potential. The potential we
will consider is called the Lennard-Jones potential, which is simple but still describes the essential features
of interactions between simple atoms and molecules: Interactions are pairwise, two interacting particles
repel each other when they are close together, attract each other at moderate distance, and effectively do
not interact as the distance increases. The form of this potential is given by
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where € is an energy scale (the minimum of the potential energy), and o alength-scale. If we have particles
of equal mass m, we also have a mass scale in the problem. These scales further induce natural velocity
and time-scales in the problem. In terms of all of these natural units, we can greatly simplify the form
of the potential and the force that each particle exerts on each other. Note than in these units, this is
equivalent to choosingo =1,e=1,and m = 1:
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We can use the above equation to model the acceleration that every particle i experiences due to all the
other N — 1 particles, and compute all of their trajectories.

Additionally, we can use this to model a thermodynamic system using the fact that the principle of equipar-
tition of energy tells us that the mean kinetic energy per particle per degree of freedom is T/2. As a result,
we can generalise this relation to define the temperature at time ¢ by
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where K is the total kinetic energy of the system and d is the spatial dimension of the system (d = 2 in
our case). In this exercise, we will try to see what happens to a gas of “Lennard-Jonesium” as it tends to
equilibrium, and try to see the what the distribution of velocities looks like.

To model such a system, however, we need to solve Newton’s laws, which we will do using the Verlet
Algorithm which is known to converge fast without causing runaway errors in energy. In this three-step
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algorithm, the positions and velocities of each particle are evolved through

(a)

(b)

(©

At
Evolve ‘r’> by half a time-step: r,-(t+At/2)=rl~(t)+7xvi(t)
Use new ‘r’ in ‘a’ to find ‘v’: vi(t+Af) =v;(t)+ At xa; (t+At/2) (4)

At
Use ‘v’ to reach ‘r’ at ‘t+dt’: ri(t+At)=ri(t+At/2)+7 xVv;(t+At)

Ignore the Lennard-Jones acceleration, choose N = 25, and complete the Verlet algorithm to simu-
late the system. Show that the kinetic and potential energies are constant (within some precision).
Keep in mind that at every step, you must update all the particles’ positions before computing their
accelerations.

Since we are modelling a finite system, we also need to take care of the boundary of the box in
which we are placing our particles. While we could make the particles “bounce” off the walls, a
simpler solution is to get rid of the walls altogether and impose periodic boundary conditions. In
our problem, we will be considering the system to be in a box stretching from x,y =0to x, y = L. As
aresult, periodic boundary conditions imply

@) ifx>L = x—x-1L,
(i) ifx<0 = x— x+L.
An animate function is provided to help you visualise your results. [2]

Next, fill in the 1j_acc, get_pe, and get_ke functions with the Lennard-Jones functions. An im-
portant point needs to be made here: since we are imposing periodic boundary conditions, if you
think about it, it should be clear that these conditions also affect the distance between two particles!
For instance, consider two particles with coordinates (L/10, y) and (9L/10, y). Naively, one would
compute their distance to be 8L/10. However, since we have imposed periodic boundary condi-
tions, the true distance between them is 2L/10. It is this “corrected” distance that should be used
to compute the accelerations in Equation (2). In order to do this, implement the pbc_distance
function using the following algorithm: Suppose the distance between two particles is p = xX + y¥,
then

@ if|x|>0.5L = x — x— L xsign (x), and similarly
(i) if|y|>0.5L = y— y—Lxsign (y),

where sign (x) = 1if x > 0 and -1 if x < 0. Complete the simulate function and run this for a couple
of systems to see how the interactions change the dynamics.

Note: If you choose dt>0.01, your particles will move too close to each other in one time-step, and
this will lead to them getting unphysically large velocities. [4]

Now, choose N = 25 and run your system for a predetermined time interval (say, t£=100). Plot
a snapshot of the initial and final configurations. Now, using the resulting configuration, run the
same code again but in the reverse direction. Do the particles return to their original positions?
(Running the code in reverse is equivalent to changing the final velocity v— —v. What conclusions
can you draw from this?) Compare the first configuration and the time-reversed result that should
bring you back to it. [2]
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(d) We will now try to see what the final speed distribution of our system is, and whether it satisfies the
prediction of Maxwell-Boltzmann distribution in two-dimensions:

P(u) = %ue‘”z/ZT (5)

Notice that since the temperature depends on the kinetic energy and not the total energy of the
system there is no a priori way to figure out the temperature to which the system will settle from just
the initial energy, as the kinetic energy will change with this. As a result, you will need to monitor
the kinetic energy as a function of time and wait until it reaches a steady-state value (apart from
fluctuations about the mean). Once it has attained this value, use Equation (3) to figure out the
average temperature 7.

Plot a histogram of the speeds of the particles after the system has attained equilibrium. Compare
it to the 2D Maxwell-Boltzmann distribution (with the T determined above) and see how closely it
agrees with your results. [2]

For a more detailed explanation of how best to implement this problem, consult Chapter 8 of An Introduc-
tion to Computer Simulation Methods by Harvey Gould, Jan Tobochnik, and Wolfgang Christian.



