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In this computational exercise, you will learn a very powerful Monte Carlo procedure for simulating sys-
tems that exchange energy with a heat-bath at a some fixed temperature 7, known as the Metropolis
Algorithm. Since we can only sample a finite number 7 of the total number of microstates, if we want to
estimate a physical quantity A we would need to approximate
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where Aj is the value of the physical quantity A in the microstate s. In principle, we could use Equation
(1) to estimate (A), but it is very inefficient since our randomly chosen microstates will usually be highly
improbable and will therefore have a negligible contribution to (A). To solve this, we choose to generate
our microstates from some probability distribution 7, which makes certain microstates “more” likely
than others. However, if we do this, we have a biased sample and if we wish to average over such a sample
generated according to 75, we also need to weight each microstate by 1/7 to eliminate the bias. Now, in
principle, any form of 7 could be used, but a reasonable choice of 7 is the Boltzmann probability itself,
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Using this definition, it should be trivial to show that
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Thus, instead of choosing the configurations randomly and then weighting them with exp(—gE), this
method chooses configurations with a probability exp(—BE) and weights them evenly." The algorithm to
do this is as follows:

¢ Begin by establishing your system in an initial, arbitrary, microstate.
* Choose a spin at random and try to flip it (i.e. try changing o; — —0;).

¢ Compute the change in energy that this flip would cause:

AE = Egjal — Eold-

1The exact mechanics of this method are a little complex, so don’t worry if you don’t understand it completely. Just follow the
algorithm exactly.
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* If AE <0, the trial is always accepted. If not, it is accepted with a probability e #2E. To enforce this:

- Compute the quantity w = e PAE,

— Generate a uniform random number r between 0 and 1.
- If r < w, accept this flip, otherwise do nothing.

This method makes sure that microstates are chosen with a probability given by the Boltzman dis-
tribution.

¢ Determine the values of desired physical quantities (like the system’s energy, or its magnetisation).
¢ Repeat this process a large number of times to sample a sufficient number of microstates.

¢ After a sufficiently large number of microstates have been sampled, start averaging the physical
quantities.

We will apply this problem to the two-dimensional Ising model whose energy (in the absence of an exter-
nal magnetic field) is given by:
E=-] Y 0,04 (4)
<p,q>
where p and g are points on a lattice, and < p, g > represents a sum over nearest neighbours. For a two-
dimensional square lattice of length L, this sum can be written explicitly as
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where o, ; is the value of the spin at lattice-point (i, j). (The factor of half occurs because performing
independent sums over i and j lead to each nearest-neighbour’s contribution being counted twice.) We
also assume periodic boundary conditions.

(a) In the code file provided, complete the oneMCS and simulate functions. In one Monte-Carlo step
per spin — a sweep — N spins are chosen at random for trial changes. It is convenient to set J =1,
which means that we are measuring temperature in units of J.

We will be working with a square lattice of length L, meaning that the number of spins N = L2. This
implies that your array of spins must be a 2D array of dimensions L x L. The contribution of each
spin g;,j to the total energy is given by

Eijj==J0ij(0ijr1+0:j-1+0is1,j+0i-1j),

where the term in the parentheses is called the “nearest-neighbour sum”. Remember to enforce
periodic boundary conditions! [3]

(b) If you've written your oneMCS function correctly, you should be able to run the animate function
for a 32 x 32 lattice. The animate function requires only an initial spin configuration and S to run.
Choose all spins to be randomly oriented initially, and choose a high temperature (say, T = 10, i.e.
B =0.1) and look at the animation. Do all the spins remain randomly oriented? Show a snapshot of
the typical configuration. (2]

(c) Next, repeat part for a low temperature (say T = 0.5, f = 2). Is there a preferred direction? The
magnetic susceptibility for our system (in the absence of an external field) is given by

x=pB((M*)y-(MD?). ©6)
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(d)

Show numerically that (M) # 0 at low temperatures, and (M) = 0 for high temperatures, meaning
that there is some intermediate temperature where (M) is first zero. Can you estimate roughly what
this temperature is? [2]

You will now try to look for indicators of something called a phase transition. Start by completing
the comparinglattices function which accepts a list of lengths (say, Ls = [4,8,16], but you
will get better answers for larger lattices) and simulates the 2D Ising model for each of these lattice
lengths, and plots the average energy per spin, Cy per spin, (|M|) per spin, and y (defined in part

). Describe these graphs. In the case of the specific heat (per spin), you should see that it has a
broad maximum. What happens to this maximum as L increases? What can you infer about Cy in
the thermodynamic limit N — co? Does the graph for (E) show any indication of something special
happening at some temperature? What about y?- In 1942, Lars Onsager showed that for an infinite
lattice T, = 2J/In(1+v'2) = 2.269]. Find T, from your simulations on finite lattices, and comment
on these values. [3]

2These graphs themselves are not enough to infer anything with any confidence, you actually need to do a detailed analysis called
“finite-size scaling” before you can rigorously prove anything; the purpose of this exercise is just to show you how simulations with
small lattices can still tell you about what happens in the thermodynamic limit.



