DS 6: Midterm Practice Questions

Philip Cherian October 6, 2023

1 Gases

- (a) Compute the partition function *Z* for a classical ideal gas of *N* particles in 3 dimensions.
 - (i) Use *Z* to compute the thermodynamic free energy *F* and the average energy $\langle E \rangle$.
 - (ii) Use *F* to compute the entropy *S*, and pressure *P* of the system.
 - (iii) Show that for a (monoatomic) classical ideal gas, $C_V = (3/2)N$.
 - (iv) Compute the adiabatic coefficient γ for a classical ideal gas in two ways: first, using the entropy, and second using the definition of $\gamma = C_P/C_V$, and the relation $C_P C_V = N$ in our units.
- (b) Repeat the previous question for an ultra-relativistic ideal gas where the energy of each particle is given by

$$E(p) = c\sqrt{p_x^2 + p_y^2 + p_z^2} = cp.$$
 (1)

- (c) Consider a classical gas of particles in a harmonic trap such that all the particles experience a potential $V(r) = \frac{1}{2}m\omega^2r^2$. Compute the entropy of this system. Show that the average internal energy of this system is $\langle E \rangle = 3NT$.
- (d) Prove the principle of equipartition of energy.

2 Lattices

- (a) Consider a lattice of distinguishable harmonic oscillators. Compute the partition function for this system, and show that the average energy is $\langle E \rangle = 3NT$.
- (b) Now consider placing the same lattice of harmonic oscillators in a gravitational potential. Compute the new partition function. Which thermodynamic quantities remain the same? Which change?
- (c) Consider a lattice of particles which can exist in one of three states with energies $-\epsilon$, 0, and ϵ .
 - (i) Compute $\langle E \rangle$ and C_V of this system as a function of temperature.
 - (ii) Do a Taylor series approximation of $\langle E \rangle$ and C_V and find which powers of T they vary with as $T \to 0$ and $T \to \infty$.
- (d) Consider a lattice with particles that can exist in one of g+1 states. One state has energy 0, and the other g all have the same energy ϵ . Compute the partition function of this system. Find the $\langle E \rangle$ and C_V . Show that as $T \to 0$, the probability of the system being in the state with energy 0 is 1. Show that as $T \to \infty$ all states are equally probable.