DS 12: Critical Exponents of the Ising Model

Philip Cherian

November 24, 2023

1 The Landau theory of phase transitions

In the previous DS you saw that the mean-field solution to the Ising model had a critical temperature T_c such that when $T > T_c$, only one solution exists for the magnetisation, but when $T < T_c$, three different solutions exist.

Which of these solutions is the one that the system chooses? In order to answer this question, we must look at the *free energy* of this system. The solution that minimises the free energy is the one that the system chooses.

- (a) First, write out the free energy per particle f(m) of this system.
- (b) Convince yourselves that when $T < T_c$ but very close to T_c , m will be very small. As a result, we can expand the free energy f(m) as a function of m. The tricky term in this expansion is one that will involve a function like $\log \cosh x$. Show that

$$\log(\cosh x) = -\frac{1}{2}\log(1-\tanh^2 x). \tag{1}$$

(c) Use this result to expand your free energy (when h = 0) and show that

$$f(m) = f(0) + \frac{(T - T_c)}{2}m^2 + \frac{T}{12}m^4,$$
 (2)

where T_c is the critical temperature below which spontaneous magnetisation is possible.

- (d) Sketch f(m) for $T > T_c$ and for $T < T_c$, and explain clearly the relationship between the solutions found in the previous section in the two regimes, and the corresponding forms of f(m).
- (e) Find the values of the spontaneous magnetisation in this limit (i.e. when $m \ll 1$). Show that

$$m \sim (T - T_c)^{\beta}$$
, where $\beta = 1/2$. (3)

(f) Similarly, show that the susceptibility is given by

$$\chi = \left(\frac{\partial M}{\partial h}\right)_{h=0} = (T - T_c)^{-\gamma} \times \begin{cases} 1, & T < T_c, \\ \frac{1}{2}, & T > T_c, \end{cases}$$
 where $\gamma = 1$. (4)